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Abstract

This work studies Craig interpolation for the logic SkNMILL, a substructural logic
admitting only a directed notion of associativity and unitality. In this setting,
Craig interpolation cannot be proved by directly employing standard proof-
theoretic methods, such as Maehara’s method, a situation that SkNMILL shares
with other logical systems such as the product-free Lambek calculus and the
implicational fragment of intuitionistic logic. We show how to overcome this issue
and appropriately modify Maehara’s method for recovering Craig interpolation.
We take one step further and, following the category-theoretic perspective of
Čubrić, we produce a proof-relevant version of the interpolation theorem, in which
we show that our interpolation procedures are right inverses of the admissible
cut rules.

Keywords: Craig interpolation, semi-substructural logic, Maehara’s method,
proof-relevant interpolation

1 Introduction

Craig interpolation is a fundamental result in first-order logic, named after the logician
William Craig [1]. A logic L has the Craig interpolation property if, for any formula
A → C provable in L (where → is the implication connective in L), there exists a
formula D such that A → D and D → C are provable in L, satisfying the variable con-
dition: var(D) ⊆ var(A)∩var(C), where var(A) is the set of atomic formulae appearing
in A. Craig interpolation has been mostly employed to prove model-theoretical results,
including Beth’s definability theorem [2], but more recently it has found applications
in other areas, e.g. in model checking [3].
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From the viewpoint of sequent calculus, substructural logics are defined by the
absence of at least one structural rule. A notable instance is Joachim Lambek’s syntac-
tic calculus [4], which forbids weakening, contraction and exchange. Its non-associative
variant, which has been extensively studied [5], also disallows associativity. Another
significant example is linear logic, introduced by Jean-Yves Girard [6], where weaken-
ing and contraction are disallowed but can be recovered for specific formulas through
modalities. Substructural logics have proven useful for modelling various phenomena
in different research areas, from the computational analysis of natural language syntax
to the development of programming languages sensitive to resource management.

Craig interpolation for substructural logics has been extensively studied, using
either algebraic or proof-theoretic techniques.

For substructural logics that lack a cut-free sequent calculus, such as arbitrary
extensions of the full Lambek calculus with exchange (FLe), Craig interpolation is
established using algebraic methods such as amalgamation. For further details on this
approach, see [7].

For substructural logics that admit a cut-free sequent calculus, Craig interpola-
tion is typically proven by adapting Maehara’s method [8], which originally aimed to
prove interpolation for LK, a sequent calculus for classical logic. This includes the
full Lambek calculus (FL) and its extensions that incorporate various combinations of
weakening, exchange, and contraction. In the case of FL, for instance, the proof starts
by establishing a stronger form of interpolation which we call Maehara interpolation
property (MIP) [9]. The latter property states:
(MIP for FL) Given f : Γ ⊢ C and a partition ⟨Γ0,Γ1,Γ2⟩ of Γ, there exist a formula

D and two derivations g : Γ1 ⊢ D and h : Γ0, D,Γ2 ⊢ C, and var(D) ⊆ var(Γ0) ∩
var(Γ0,Γ1, C)

Being a partition simply means that the ordered list of formulae Γ is equal to the
concatenation of Γ0,Γ1 and Γ2, i.e. Γ = Γ0,Γ1,Γ2. Maehara interpolation also holds for
the non-associative variant of FL, for an appropriate reformulation of the principle in
which antecedents are trees of formulae instead of lists. Notice that Craig interpolation
is a property of a logic (with a notion of implication), while Maehara interpolation
is a property of a deductive system in which it is possible to appropriately partition
antecedents.

Maehara interpolation is a stronger form of the so-called deductive interpolation
property. A logic L has the deductive interpolation property if, for any formulae A and
C, whenever A ⊢ C (where ⊢ is the consequence relation of L), then there exists a for-
mula B such that A ⊢ B and B ⊢ C while also satisfying the usual variable condition.
Furthermore, if the sequent calculus of L admits the invertibility of implication-right
rules (as is the case in FL for both left and right implication), Craig interpolation
follows immediately as a consequence of deductive interpolation.

While Maehara’s method is often applicable to extensions of FL, it does not work
for some of its fragment, which therefore do not enjoy Maehara interpolation. This is
the case for fragments lacking multiplicative and/or additive conjunction, such as the
product-free Lambek calculus [10] (with only left and right implications as connectives)
and the implicational fragment of intuitionistic logic [11]. The variant of Maehara
interpolation satisfied by the product-free Lambek calculus, which we dub Maehara
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multi-interpolation (MMIP), is particularly relevant for our work. Here is its statement,
which we have slightly modified to better align with our forthcoming discussion:
(MMIP for product-free Lambek calculus) Given f : Γ ⊢ C and a partition

⟨Γ0,Γ1,Γ2⟩ of Γ, there exist
– a partition ⟨∆1, . . . ,∆n⟩ of Γ1,
– a list of interpolant formulae D1, . . . , Dn,
– a derivation g : Γ0, D1, . . . , Dn,Γ2 ⊢ C,
– a derivation hi : ∆i ⊢ Di for all i ∈ [1, . . . , n], such that
– var(D1, . . . , Dn) ⊆ var(∆1, . . . ,∆n) ∩ var(Γ0,Γ2, C).

Differently fromMaehara interpolation, in the above property we look for a list of inter-
polants instead of a single formula. This adjustment allows to overcome the difficulty
caused by the absence of conjunction.

In this paper, we aim at proving Craig interpolation for the semi-substructural logic
SkNMILL which we recently introduced in collaboration with Tarmo Uustalu [12]. In
our terminology, a logic is semi-substructural if it is an intermediate logic in between
(certain fragments of) non-associative and associative intuitionistic linear logic (or
the Lambek calculus). Semi-associativity and semi-unitality are encoded as follows.
Sequents are in the form S | Γ ⊢ A, where the antecedent consists of an optional
formula S, called stoup, adapted from Girard [13], and an ordered list of formulae
Γ. The succedent is a single formula A. We restrict the application of introduction
rules in an appropriate way to allow only one of the directions of associativity and
unitality, e.g. only (A ⊗ B) ⊗ C | ⊢ A ⊗ (B ⊗ C) is provable in SkNMILL, while its
inverse A ⊗ (B ⊗ C) | ⊢ (A ⊗ B) ⊗ C is not. In other words, only directed variants
of the structural rules of associativity and unitality are included, while their inverses
are generally disallowed.

The introduction of semi-substructural logics was originally motivated by the study
of combinatorial properties of certain categorical structures, called left skew monoidal
categories [14]. These categories are a weaker variant of MacLane’s monoidal cate-
gories. In left skew monoidal categories, the structural morphisms of associativity and
unitality (which are natural transformations typically called ‘associator’ and ‘unitors’)
are not required to have an inverse. Instead, they are natural family of morphisms
with a specific orientation. For this reason, left skew monoidal categories can be seen
as semi-associative and semi-unital variants of monoidal categories.

Different variants of left skew monoidal categories have led to the development
of their corresponding semi-substructural logic. These include (i) left skew semigroup
[15], (ii) left skew monoidal [16], (iii) left skew (prounital) closed [17], (iv) left skew
monoidal closed categories [12, 18, 19], and (v) left distributive skew monoidal cate-
gories with finite products and coproducts [20]. Each of these logics admits a cut-free
sequent calculus. Moreover, they admit a subcalculus of “proofs in normal form”, which
is inspired by Jean-Marc Andreoli’s focusing method [21] and as such provides a way
to make root-first proof search more deterministic. Practically, the focusing method
is employed for solving the coherence problem for the corresponding variants of left
skew monoidal categories. In the case of left skew monoidal closed categories, a solu-
tion to the coherence (or word) problem consists of a procedure for deciding equality
of parallel morphisms in the free left skew monoidal closed category on a given set At.
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In previous work, we showed that the focused subcalculus for SkNMILL is a concrete
presentation of such free category, so a solution to the coherence problem is obtained
by checking whether two morphisms are represented by the same derivation in the
focused subcalculus.

To prove Craig interpolation for SkNMILL, we need to modify the statement of
Maehara interpolation. This modification is required due to issues similar to those
encountered in the product-free Lambek calculus [10] and the implicational fragment
of intuitionistic logic [11], where Maehara interpolation fails. The main result of the
paper is the following:
Theorem 4. In the sequent calculus for SkNMILL, the following two interpolation
properties hold:
(sMIP) Given a derivation f : S | Γ ⊢ C and a partition ⟨Γ0,Γ1⟩ of Γ, there exist

– an interpolant formula D,
– a derivation g : S | Γ0 ⊢ D,
– a derivation h : D | Γ1 ⊢ C, such that
– var(D) ⊆ var(S,Γ0) ∩ var(Γ1, C).

(cMMIP) Given a derivation f : S | Γ ⊢ C and a partition ⟨Γ0,Γ1,Γ2⟩ of Γ, there exist
– a partition ⟨∆1, . . . ,∆n⟩ of Γ1,
– a list of interpolant formulae D1, . . . , Dn,
– g : S | Γ0, D1, . . . , Dn,Γ2 ⊢ C,
– hi : − | ∆i ⊢ Di for all i ∈ [1, . . . , n], such that
– var(D1, . . . , Dn) ⊆ var(∆1, . . . ,∆n) ∩ var(S,Γ0,Γ2, C).

In SkNMILL, the first property sMIP, which stands for stoup Maehara interpolation,
resembles Maehara interpolation for the FL. Whereas cMMIP, which stands for context
Maehara multi-interpolation, is similar to Maehara multi-interpolation for the product-
free Lambek calculus.

Motivated by the categorical interpretation of SkNMILL, we take one more step and
investigate the interplay between the admissible cut rules (called scut and ccut) and
the derivations produced by the interpolation algorithm of Theorem 4. In previous
work [12], we introduced an equivalence relation on derivations (⊜) that captures
eta-conversions and permutative conversions, and is both sound and complete with
respect to the categorical semantics. We show that the sMIP and cMMIP procedures
of Theorem 4 are right inverses of the admissible rules scut and ccut, respectively.
Formally, we prove the following theorem:
Theorem 7.
(i) Let g : S | Γ0 ⊢ D and h : D | Γ1 ⊢ C be the derivations obtained by applying the

sMIP procedure on a derivation f : S | Γ ⊢ C with the partition ⟨Γ0,Γ1⟩. Then
scut(g, h) ⊜ f .

(ii) Let g : S | Γ0, D1, . . . , Dn,Γ2 ⊢ C and hi : − | ∆i ⊢ Di for i ∈ [1, . . . , n] be
derivations obtained by applying the cMMIP procedure on a derivation f : S | Γ ⊢
C with the partition ⟨Γ0,Γ1,Γ2⟩. Then ccut∗([hi], g) ⊜ f .

In the above statement, ccut∗ denotes multiple applications of the admissible ccut
rule, one for each derivation hi. Theorems 4 and 7 together show that SkNMILL satisfies
a proof-relevant form of Craig interpolation, in the sense formulated in the early 90s
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by Čubrić [22] in the setting of intuitionistic propositional logic and recently discussed
also by Saurin [23] for (extensions of) classical linear logic.

All the proofs presented in this paper have been formalized in the proof assistant
Agda. The full formalization is freely available at the following website:

https://github.com/niccoloveltri/code-skewmonclosed/tree/interpolation.

2 A Sequent Calculus for SkNMILL

We start by recalling the sequent calculus for left skew monoidal closed categories
that was introduced in [12], which we name SkNMILL. This is a “skew variant” of
non-commutative multiplicative intuitionistic linear logic, in a way that will be made
precise later in this section.

Formulae are inductively generated by the grammar A,B ::= X | I | A⊗B | A ⊸ B,
where X comes from a set At of atoms, I is a multiplicative unit, ⊗ is multiplicative
conjunction and ⊸ is a linear implication. The set of formulae is denoted Fma.

A sequent is a triple of the form S | Γ ⊢ A. The antecedent consists of two parts:
an optional formula S, called the stoup (a terminology that comes from Girard [13]),
and an ordered list of formulae Γ, that we call the context. The succedent A is a single
formula. The symbol S consistently denotes a stoup, meaning S can either be a single
formula or empty, indicated as S = −. Furthermore, letters X, Y , Z and W always
denote atomic formulae.

Derivations are generated recursively by the following rules:

A | ⊢ A
ax

A | Γ ⊢ C

− | A,Γ ⊢ C
pass

− | Γ ⊢ A B | ∆ ⊢ C

A ⊸ B | Γ,∆ ⊢ C
⊸L

S | Γ, A ⊢ B

S | Γ ⊢ A ⊸ B
⊸R

− | Γ ⊢ C

I | Γ ⊢ C
IL − | ⊢ I

IR

A | B,Γ ⊢ C

A⊗B | Γ ⊢ C
⊗L

S | Γ ⊢ A − | ∆ ⊢ B

S | Γ,∆ ⊢ A⊗B
⊗R

(1)

The inference rules in (1) are similar to the ones in the sequent calculus for non-
commutative multiplicative intuitionistic linear logic (NMILL) [24], but with some
crucial differences:
1. The left logical rules IL, ⊗L and ⊸L, read bottom-up, are only allowed to be

applied on the formula in the stoup position.
2. The right tensor rule ⊗R, read bottom-up, splits the antecedent of a sequent

S | Γ,∆ ⊢ A⊗B and in the case where S is a formula, S is always moved to the
stoup of the left premise, even if Γ is empty.

3. The presence of the stoup distinguishes two types of antecedents, A | Γ and
− | A,Γ. The structural rule pass (for ‘passivation’), read bottom-up, allows the
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moving of the leftmost formula in the context to the stoup position whenever the
stoup is empty.

4. The logical connectives of NMILL typically include two ordered implications ⊸
and

⊸

(often also called residuals), which are two variants of linear implication
arising from the removal of the exchange rule from intuitionistic linear logic. In
our logic SkNMILL, only the implication ⊸ is present, which Lambek would call
right implication/residual.

SkNMILL can be seen as an intermediate logic between: (i) the (I,⊗,⊸)-fragment
of non-commutative intuitionistic linear logic (where ⊸ is right residual /), i.e. the
associative Lambek calculus with multiplicative unit, and (ii) the same fragment with-
out I and ⊗, i.e. the product-free Lambek calculus1 without left residual. In fact,
every derivation in SkNMILL can be replicated in the Lambek calculus. On the other
hand, the product-free Lambek calculus without left residual admits a presentation
as a semi-substructural logic, corresponding to the fragment of (1) with only rules ax,
pass, ⊸L and ⊸R [17].

This calculus is cut-free, in the sense that the following two rules are admissible:

S | Γ ⊢ A A | ∆ ⊢ C

S | Γ,∆ ⊢ C
scut

− | Γ ⊢ A S | ∆0, A,∆1 ⊢ C

S | ∆0,Γ,∆1 ⊢ C
ccut

(2)

The presence of two cut rules comes from the fact that the cut formula can appear
either in the stoup or the context of the second premise.

We introduce a few admissible rules that will be employed later in the paper. First,
given a list of formulae ∆ = A1, . . . , An, we define an iterated version of the rule ⊸R,
consisting of n applications of ⊸R. Below and in the future we write ∆ ⊸∗ B for the
formula A1 ⊸ (A2 ⊸ (. . . (An ⊸ B) . . . )), which is simply B when ∆ is empty. The
double-line inference rule denotes an equality of sequents.

f
S | Γ,∆ ⊢ B

S | Γ ⊢ ∆ ⊸∗ B
⊸R∗ =

f
S | Γ,∆ ⊢ B

S | Γ, A1, A2, . . . , An ⊢ B

S | Γ, A1, A2, . . . , An−1 ⊢ An ⊸ B
⊸R

...
S | Γ, A1 ⊢ A2 ⊸ (. . . (An ⊸ B) . . . )

S | Γ ⊢ A1 ⊸ (A2 ⊸ (. . . (An ⊸ B) . . . ))
⊸R

S | Γ ⊢ ∆ ⊸∗ B

(3)

If n = 0, then ⊸R∗f = f .
Second, given a list of formulae ∆ = A1, . . . , An and a list of derivations fi :

− | Γi ⊢ Ai for i ∈ [1, . . . , n], we define an iterated version of ⊸L, consisting on n

1This deductive system traditionally requires antecedents to be non-empty lists of formulae, which is a
restriction motivated by linguistic consideration. Here we mean the version of this calculus without such
restriction.
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applications of ⊸L, one for each derivation fi:

[fi]
[− | Γi ⊢ Ai]i

g
B | Λ ⊢ C

∆ ⊸∗ B | Γ1, . . . ,Γn,Λ ⊢ C
⊸L∗

= f1
− | Γ1 ⊢ A1

fn
− | Γn ⊢ An

g
B | Λ ⊢ C

An ⊸ B | Γn,Λ ⊢ C
⊸L

...
A2 ⊸ (. . . (An ⊸ B) . . . ) | Γ2, . . . ,Γn,Λ ⊢ C

A1 ⊸ (A2 ⊸ (. . . (An ⊸ B) . . . )) | Γ1,Γ2, . . . ,Γn,Λ ⊢ C
⊸L

∆ ⊸∗ B | Γ1, . . . ,Γn,Λ ⊢ C

(4)

The rule ⊸L∗ has n + 1 premises, the first n are collected in the list of sequents
[− | Γi ⊢ Ai]i. If n = 0, then ⊸L∗([ ], g) = g.

Finally, given a list of derivations fi : − | ∆i ⊢ Ai for i ∈ [1, . . . , n], we define an
iterated version of ccut, consisting on n applications of ccut, one for each derivation fi:

[fi]
[− | ∆i ⊢ Ai]i

g
S | Γ0, A1, . . . , An,Γ1 ⊢ C

S | Γ0,∆1,∆2, . . . ,∆n,Γ1 ⊢ C
ccut∗

=
f1

− | ∆1 ⊢ A1

fn
− | ∆n ⊢ An

g
S | Γ0, A1, A2, . . . , An,Γ1 ⊢ C

S | Γ0, A1, A2, . . . ,∆n,Γ1 ⊢ C
ccut

...
S | Γ0, A1,∆2, . . . ,∆n,Γ1 ⊢ C

S | Γ0,∆1,∆2, . . . ,∆n,Γ1 ⊢ C
ccut

(5)

If n = 0, then ccut∗([ ], g) = g.

3 Equivalence of Derivations

Sets of derivations are quotiented by a congruence relation ⊜, generated by the pairs
of derivations in Figure 1 and 2. The three equations in Figure 1 are η-conversions,
completely characterizing the ax rule on non-atomic formulae. The equations in Figure
2 are permutative conversions.

The generating equations of ⊜ have been carefully selected to appropriately match
the equational theory of left skew monoidal closed categories. More information about
this relationship in terms of categorical semantics can be found in [12], where a pre-
cise correspondence between sequent calculus derivations, the congruence relation ⊜
and left skew monoidal closed categories is described. The latter paper also contains
an interpretation of the sequent calculus as a logic of resources, as well as a calcu-
lus of derivations in normal form, which completely characterizes proofs modulo the
congruence relation ⊜.
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I | ⊢ I
ax

⊜ − | ⊢ I
IR

I | ⊢ I
IL

A⊗B | ⊢ A⊗B
ax

⊜
A | ⊢ A

ax
B | ⊢ B

ax

− | B ⊢ B
pass

A | B ⊢ A⊗B
⊗R

A⊗B | ⊢ A⊗B
⊗L

A ⊸ B | ⊢ A ⊸ B
ax

⊜

A | ⊢ A
ax

− | A ⊢ A
pass

B | ⊢ B
ax

A ⊸ B | A ⊢ B
⊸L

A ⊸ B | ⊢ A ⊸ B
⊸R

Fig. 1 Equivalence of derivations: η-conversions

Moreover, more equations of derivations hold in SkNMILL due to the cut-elimination
procedures defined in [12, 19]. This set of equations fully describe the possible inter-
actions between cut rules. The first set of equations in Figure 3 shows that parallel
composition of cut rules is commutative. The second set of equations in Figure 4 shows
that sequential composition of cut rules is associative. Analogous equations have been
proved in [16] for the fragment of SkNMILL without linear implication. Notice that the
each pair of derivations in these equations are strictly equal, not merely ⊜-related.
Proposition 1. The commutativity equations in Figure 3 and the associativity
equations in Figure 4 are admissible.

Proof. The proof proceeds by mutual induction on the structure of derivations. There
are many cases to consider. We do not include the long proof here and refer the
interested reader to consult our Agda formalization. Heavy proofs by pattern matching
like this one is where the employment of a proof assistant becomes very helpful, in our
experience.

We conclude this section by introducing a final equation and two equivalences,
that will be employed later in Section 6. In the construction of the scut admissibility
procedure [12, 19], the case when the first premise is of the form ⊸R f and the
second premise of the form ⊸L (g, h) (i.e. a principal cut when the cut formula is an
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f
A′ | Γ ⊢ A

− | A′,Γ ⊢ A
pass g

− | ∆ ⊢ B

− | A′,Γ,∆ ⊢ A⊗B
⊗R

⊜

f
A′ | Γ ⊢ A

g
− | ∆ ⊢ B

A′ | Γ,∆ ⊢ A⊗B
⊗R

− | A′,Γ,∆ ⊢ A⊗B
pass

f
− | Γ ⊢ A

I | Γ ⊢ A
IL

g
− | ∆ ⊢ B

I | Γ,∆ ⊢ A⊗B
⊗R

⊜

f
− | Γ ⊢ A

g
− | ∆ ⊢ B

− | Γ,∆ ⊢ A⊗B
⊗R

I | Γ,∆ ⊢ A⊗B
IL

f
A′ | B′,Γ ⊢ A

A′ ⊗B′ | Γ ⊢ A
⊗L g

− | ∆ ⊢ B

A′ ⊗B′ | Γ,∆ ⊢ A⊗B
⊗R

⊜

f
A′ | B′,Γ ⊢ A

g
− | ∆ ⊢ B

A′ | B′,Γ,∆ ⊢ A⊗B
⊗R

A′ ⊗B′ | Γ,∆ ⊢ A⊗B
⊗L

f
− | Γ ⊢ C

g
D | ∆ ⊢ A

C ⊸ D | Γ,∆ ⊢ A
⊸L h

− | Λ ⊢ B

C ⊸ D | Γ,∆,Λ ⊢ A⊗B
⊗R

⊜
f

− | Γ ⊢ C

g
D | ∆ ⊢ A

h
− | Λ ⊢ B

D | ∆,Λ ⊢ A⊗B
⊗R

C ⊸ D | Γ,∆,Λ ⊢ A⊗B
⊸L

f
A′ | Γ, A ⊢ B

A′ | Γ ⊢ A ⊸ B
⊸R

− | A′,Γ ⊢ A ⊸ B
pass

⊜

f
A′ | Γ, A ⊢ B

− | A′,Γ, A ⊢ B
pass

− | A′,Γ ⊢ A ⊸ B
⊸R

f
− | Γ, A ⊢ B

− | Γ ⊢ A ⊸ B
⊸R

I | Γ ⊢ A ⊸ B
IL

⊜

f
− | Γ, A ⊢ B

I | Γ, A ⊢ B
IL

I | Γ ⊢ A ⊸ B
⊸R

f
A′ | B′,Γ, A ⊢ B

A′ | B′,Γ ⊢ A ⊸ B
⊸R

A′ ⊗B′ | Γ ⊢ A ⊸ B
⊗L

⊜

f
A′ | B′,Γ, A ⊢ B

A′ ⊗B′ | Γ, A ⊢ B
⊗L

A′ ⊗B′ | Γ ⊢ A ⊸ B
⊸R

f
− | Γ ⊢ A′

g
B′ | ∆, A ⊢ B

B′ | ∆ ⊢ A ⊸ B
⊸R

A′ ⊸ B′ | Γ,∆ ⊢ A ⊸ B
⊸L

⊜

f
− | Γ ⊢ A′

g
B′ | ∆, A ⊢ B

A′ ⊸ B′ | Γ, A ⊢ B
⊸L

A′ ⊸ B′ | Γ,∆ ⊢ A ⊸ B
⊸R

Fig. 2 Equivalence of derivations: permutative conversions
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f
S | Γ0 ⊢ A

g
− | Γ2 ⊢ B

h
A | Γ1, B,Γ3 ⊢ C

A | Γ1,Γ2,Γ3 ⊢ C
ccut

S | Γ0,Γ1,Γ2,Γ3 ⊢ C
scut

=
g

− | Γ2 ⊢ B

f
S | Γ0 ⊢ A

h
A | Γ1, B,Γ3 ⊢ C

S | Γ0,Γ1, B,Γ3 ⊢ C
scut

S | Γ0,Γ1,Γ2,Γ3 ⊢ C
ccut

f
− | Γ1 ⊢ A

g
− | Γ3 ⊢ B

h
S | Γ0, A,Γ2, B,Γ4 ⊢ C

S | Γ0, A,Γ2,Γ3,Γ4 ⊢ C
ccut

S | Γ0,Γ1,Γ2,Γ3,Γ4 ⊢ C
ccut

=
g

− | Γ3 ⊢ B

f
− | Γ1 ⊢ A

h
S | Γ0, A,Γ2, B,Γ4 ⊢ C

S | Γ0,Γ1,Γ2, B,Γ4 ⊢ C
ccut

S | Γ0,Γ1,Γ2,Γ3,Γ4 ⊢ C
ccut

Fig. 3 Commutativity of cut

implication) is defined as follows:

f
S | Γ, A ⊢ B

S | Γ ⊢ A ⊸ B
⊸R

g
− | ∆ ⊢ A

h
B | Λ ⊢ C

A ⊸ B | ∆,Λ ⊢ C
⊸L

S | Γ,∆,Λ ⊢ C
scut

=

g
− | ∆ ⊢ A

f
S | Γ, A ⊢ B

S | Γ,∆ ⊢ B
ccut h

B | Λ ⊢ C

S | Γ,∆,Λ ⊢ C
scut

This equation can be generalized to one where ⊸R, ⊸L and ccut are replaced by their
iterated versions ⊸R∗, ⊸L∗ and ccut∗ introduced in Equations (3), (4) and (5).
Proposition 2. Given a list of formulae Λ = A1, . . . , An, a derivation f : S | Γ0,Λ ⊢
B and a list of derivations gi : − | ∆i ⊢ Ai for i ∈ [1, . . . , n], the following equation is
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f
S | Γ0 ⊢ A

g
A | Γ1 ⊢ B

h
B | Γ2 ⊢ C

A | Γ1,Γ2 ⊢ C
scut

S | Γ0,Γ1,Γ2 ⊢ C
scut

=

f
S | Γ0 ⊢ A

g
A | Γ1 ⊢ B

S | Γ0,Γ1 ⊢ B
scut h

B | Γ2 ⊢ C

S | Γ0,Γ1,Γ2 ⊢ C
scut

f
− | Γ1 ⊢ A

g
S | Γ0, A,Γ2 ⊢ B

h
B | Γ3 ⊢ C

S | Γ0, A,Γ2,Γ3 ⊢ C
scut

S | Γ0,Γ1,Γ2,Γ3 ⊢ C
ccut

=

f
− | Γ1 ⊢ A

g
S | Γ0, A,Γ2 ⊢ B

S | Γ0,Γ1,Γ2 ⊢ B
ccut h

B | Γ3 ⊢ C

S | Γ0,Γ1,Γ2,Γ3 ⊢ C
scut

f
− | Γ2 ⊢ A

g
− | Γ1, A,Γ3 ⊢ B

h
S | Γ0, B,Γ4 ⊢ C

S | Γ0,Γ1, A,Γ3,Γ4 ⊢ C
ccut

S | Γ0,Γ1,Γ2,Γ3,Γ4 ⊢ C
ccut

=

f
− | Γ2 ⊢ A

g
− | Γ1, A,Γ3 ⊢ B

S | Γ1,Γ2,Γ3 ⊢ B
ccut h

S | Γ0, B,Γ4 ⊢ C

S | Γ0,Γ1,Γ2,Γ3,Γ4 ⊢ C
ccut

Fig. 4 Associativity of cut

derivable:

f
S | Γ0,Λ ⊢ B

S | Γ0 ⊢ Λ ⊸∗ B
⊸R∗

[gi]
[− | ∆i ⊢ Ai]i

h
B | Γ1 ⊢ C

Λ ⊸∗ B | ∆1, . . . ,∆n,Γ1 ⊢ C
⊸L∗

S | Γ0,∆1, . . . ,∆n,Γ1 ⊢ C
scut

=

[gi]
[− | ∆i ⊢ Ai]i

f
S | Γ0,∆1, . . . ,∆n ⊢ B

S | Γ0,∆1, . . . ,∆n ⊢ B
ccut∗ h

B | Γ1 ⊢ C

S | Γ0,∆1, . . . ,∆n,Γ1 ⊢ C
scut

Proof. Proving the validity of the equation requires various applications of the
associativity equations in Proposition 1.
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The admissibility of rule scut is proved in [12, 19] by structural recursion on the
derivation of the left premise. This implies that “scut commutes with left rules in
first premise”, i.e. that scut(⊙L f, g) = ⊙L(scut(f, g) for any one-premise left rule ⊙L
among IL, ⊗L and pass, and also scut(⊸L(f, f ′), g) = ⊸L(f, scut(f ′, g). It is possible
to also show that “scut commutes with right rules in second premise”, but only up to
equivalence ⊜.
Proposition 3. The following equivalences of derivations involving scut, ⊗R, and
⊸R are admissible in SkNMILL:

f
S | Γ ⊢ A

g
A | ∆ ⊢ B

h
− | Λ ⊢ C

A | ∆,Λ ⊢ B ⊗ C
⊗R

S | Γ,∆,Λ ⊢ B ⊗ C
scut

⊜

f
S | Γ ⊢ A

g
A | ∆ ⊢ B

S | Γ,∆ ⊢ B
scut h

− | Λ ⊢ C

S | Γ,∆,Λ ⊢ B ⊗ C
⊗R

f
S | Γ ⊢ B

g
A | ∆, B ⊢ C

A | ∆ ⊢ B ⊸ C
⊸R

S | Γ,∆ ⊢ B ⊸ C
scut

⊜

f
S | Γ ⊢ A

g
A | ∆, B ⊢ C

S | Γ,∆, B ⊢ C
scut

S | Γ,∆ ⊢ B ⊸ C
⊸R

Proof. Both equivalences are proved by structural induction on the derivation f .

4 Failure of Maehara Interpolation

The goal of this paper is proving that the logic SkNMILL satisfies the Craig interpolation
property. But, as already mentioned in the introductive section, we cannot follow
the same proof strategy used in the (associative or non-associative) Lambek calculus,
where Craig interpolation follows as a corollary to Maehara interpolation. This is
because the sequent calculus of SkNMILL does not satisfy Maehara interpolation. Let
us see why.

First, in analogy with the presence of two admissible cut rules (2), there are also
two different form of interpolation. This is because the subsequence of the antecedents
for which we wish to find an interpolant can either contain the stoup or it can be
fully included in the context. More explicitly, given an antecedent S | Γ, we can
either: (i) split the context Γ = Γ1,Γ2 in two parts and look for an interpolant of
the sub-antecedent S | Γ1, or (ii) split the context Γ = Γ0,Γ1,Γ2 in three parts and
look for an interpolant of the sub-context Γ1. The Maehara interpolation property in
SkNMILL would then consist of two statement, a stoup Maehara interpolation (sMIP)
and a context Maehara interpolation (cMIP):
(sMIP) Given f : S | Γ ⊢ C and a partition ⟨Γ0,Γ1⟩ of Γ, there exists

– an interpolant formula D,
– a derivation g : S | Γ0 ⊢ D,
– a derivation h : D | Γ1 ⊢ C, such that
– var(D) ⊆ var(S,Γ0) ∩ var(Γ1, C).

(cMIP) Given f : S | Γ ⊢ C and a partition ⟨Γ0,Γ1,Γ2⟩ of Γ, there exists
– an interpolant formula D,
– a derivation g : − | Γ1 ⊢ D,
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– a derivation h : S | Γ0, D,Γ2 ⊢ C, such that
– var(D) ≤ var(Γ1) ∩ var(S,Γ0,Γ2, C).

However, this property is not provable in SkNMILL. The problem lays in the validity
of the second statement cMIP. An attempt to prove this would proceed by induction
on the height of the derivation f : S | Γ ⊢ C and then inspecting what is the last
rule applied in f . The rules ⊗R and ⊸L split the context, so one should be careful
to consider all possible ways in which these splittings relate to the given partition
⟨Γ0,Γ1,Γ2⟩ of Γ.

The critical case is f = ⊗R(f ′, f ′′) with the partition ⟨Γ0, (Γ
′
1,Γ

′′
1),Γ2⟩ and two

derivations f ′ : S | Γ0,Γ
′
1 ⊢ A and f ′′ : − | Γ′′

1 ,Γ2 ⊢ B. So this is the case when the ⊗R
rule splits Γ1 in two parts Γ′

1,Γ
′′
1 . By induction on f ′ and the partition ⟨Γ0,Γ

′
1, [ ]⟩, we

would be given a formula D and derivations g′ : − | Γ′
1 ⊢ D, and h′ : S | Γ0, D ⊢ A.

By applying the inductive hypothesis on f ′′ and the partition ⟨[ ],Γ′′
1 ,Γ2⟩, we would

be given a formula E and derivations g′′ : − | Γ′′
1 ⊢ E and h′′ : − | E,Γ2 ⊢ B.

We obtain ⊗R(g′, g′′) : − | Γ′
1,Γ

′′
1 ⊢ D ⊗ E, but we are unable to construct the

other desired proof of sequent S | Γ0, D ⊗ E,Γ1 ⊢ A ⊗ B. We get very close via
⊗R(h′, h′′) : S | Γ0, D,E,Γ1 ⊢ A⊗B, but we are unable to merge D and E into D⊗E,
since in our calculus the ⊗L cannot be applied on formulae in context.

For a simple concrete counterexample, consider the derivation

X | ⊢ X
ax

Y | ⊢ Y
ax

− | Y ⊢ Y
pass

X | Y ⊢ X ⊗ Y
⊗R

Z | ⊢ Z
ax

− | Z ⊢ Z
pass

X | Y,Z ⊢ (X ⊗ Y )⊗ Z
⊗R

and the partition ⟨[ ], (Y,Z), [ ]⟩. Suppose by contradiction that Maehara interpolation
holds, so we would have a formula D and two derivations g : − | Y, Z ⊢ D and
h : X | D ⊢ (X ⊗ Y ) ⊗ Z. The variable condition of Maehara interpolation and the
existence of the derivation g ensure that D does not contain atomic formulae other
than Y and Z, and the latter must have a unique occurrence in D. Nevertheless, the
existence of derivation h is absurd. Since X is atomic, h can only be of the form: (i)
f = ⊗R(f1, f2) for some derivations f1 : X | D ⊢ X ⊗ Y and f2 : − | ⊢ Z, or (ii)
f = ⊗R(f ′

1, f
′
2) for some derivations f ′

1 : X | ⊢ X ⊗ Y and f ′
2 : − | D ⊢ Z. Case (i)

is impossible since there is no such f2, while case (ii) is impossible since there is no
such f ′

1.
This situation is reminiscent of proving interpolation in the product-free Lam-

bek calculus [10] and in the implicational fragment of intuitionistic logic [11].
In both these cases, Maehara interpolation fails because none of the additive
(∧) and multiplicative (⊗) conjunction is present. A concrete counterexample
in the product-free Lambek calculus (adapted from Kanazawa [11]) is given
by the derivable sequent W,W\Y,W,W\X,X\(Y \Z) ⊢ Z with the partition
⟨[ ], [W,W\Y,W,W\X], [X\(Y \Z)]⟩. This can be shown to not satisfy Maehara
interpolation property. In the presence of ⊗, Maehara’s method would produce the
interpolant formula X⊗Y . The situation of SkNMILL is somewhere inbetween: we have
a multiplicative conjunction ⊗ but we cannot do much with it if a formula A⊗B is in
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context instead of the stoup position, since the rule ⊗L cannot be applied arbitrarily
in the antecedent. The counterexample to MIP in product-free sequent calculus can,
when appropriately modified, also works as a counterexample to cMIP in SkNMILL:
consider the derivable sequent X ⊸ (Y ⊸ Z) | W ⊸ X,W,W ⊸ Y,W ⊢ Z with the
partition ⟨[ ], [W ⊸ X,W,W ⊸ Y,W ], [ ]⟩.

5 Craig Interpolation for SkNMILL

In this section, we show that SkNMILL enjoys Craig interpolation, even though it does
not generally enjoy Maehara interpolation. This is again in analogy with the product-
free Lambek calculus. As mentioned in the introductive section, Pentus [10] proved
that the latter satisfies a relaxation of Maehara interpolation, that we dubbed Maehara
multi-interpolation (MMIP), which is sufficient to show Craig interpolation.

Here is a brief sketch of the proof. Suppose the formula A\B is provable in product-
free Lambek calculus. This implies that there exists a derivation f : A ⊢ B. Apply
the Maehara multi-interpolation procedure to f and the partition ⟨[ ], [A], [ ]⟩. This
produces a partition ⟨∆1, . . . ,∆n⟩ of [A]. Since [A] is a singleton list, all ∆i must be
empty apart from one which is equal to [A]. Maehara multi-interpolation also produces
formulae D1, . . . , Dn satisfying the variable condition σX(Di) ≤ σX(∆i) for all i and
atomic formulae X. The latter cannot be true if ∆i is empty, since this logic has no
units. This implies n = 1. Therefore, Maehara multi-interpolation in this case produces
only two derivations h : A ⊢ D1 and g : D1 ⊢ B, i.e. D1 is the Craig interpolant of
A and B. A similar proof also works for the product-free Lambek calculus enhanced
with a multiplicative unit.

We showed in the previous section that SkNMILL does not satisfy the context Mae-
hara interpolation property (cMIP). We prove now that instead it satisfies a context
Maehara multi-interpolation property (cMMIP). And the stoup Maehara interpolation
property (sMIP) also holds.
Theorem 4. In the sequent calculus for SkNMILL, the following two interpolation
properties hold:
(sMIP) Given a derivation f : S | Γ ⊢ C and a partition ⟨Γ0,Γ1⟩ of Γ, there exist

– an interpolant formula D,
– a derivation g : S | Γ0 ⊢ D,
– a derivation h : D | Γ1 ⊢ C, such that
– var(D) ⊆ var(S,Γ0) ∩ var(Γ1, C).

(cMMIP) Given a derivation f : S | Γ ⊢ C and a partition ⟨Γ0,Γ1,Γ2⟩ of Γ, there exist
– a partition ⟨∆1, . . . ,∆n⟩ of Γ1,
– a list of interpolant formulae D1, . . . , Dn,
– g : S | Γ0, D1, . . . , Dn,Γ2 ⊢ C,
– hi : − | ∆i ⊢ Di for all i ∈ [1, . . . , n], such that
– var(D1, . . . , Dn) ⊆ var(∆1, . . . ,∆n) ∩ var(S,Γ0,Γ2, C).

These two statements of the theorem are proved mutually by structural induction
on derivations. We separate the proofs for readability.

Proof of sMIP. We proceed by induction on the structure of f .
Case f = ax. Suppose f = ax : A | ⊢ A, which forces Γ0 = Γ1 = [ ]. In this case, the
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interpolant formula is A and g = h = ax : A | ⊢ A, where the variable condition is
automatically satisfied.
Case f = IR. Since f : − | ⊢ I, this forces again Γ0 and Γ1 to be empty lists. In this
case, the interpolant formula is I and g = IR : − | ⊢ I and h = IL(IR) : I | ⊢ I, where
the variable condition is vacuously satisfied.
Case f = IL f ′. Given a derivation f ′ : − | Γ ⊢ C, by induction on f ′ with the same
partition ⟨Γ0,Γ1⟩ of Γ we obtain

– a formula D,
– a derivation g′ : − | Γ0 ⊢ D,
– a derivation h′ : D | Γ1 ⊢ C, such that
– var(D) ⊆ var(Γ0) ∩ var(Γ1, C).

In this case, the interpolant formula for f is D and the two desired derivations are
g = IL g′ and h = h′. The variable condition is automatically satisfied.
Cases f = ⊗L f ′ and f = ⊸R f ′. Analogous to the previous case.
Case f = pass f ′. Let f ′ : A | Γ′ ⊢ C and Γ = A,Γ′. There are two subcases determined
by the partition ⟨Γ0,Γ1⟩ of Γ. Specifically, either Γ0 is an empty list or not.

• If Γ0 = [ ], then the interpolant is I and two desired derivations are IR and
IL(pass f ′). The variable condition is satisfied because var(I) = ∅.

• If Γ0 = A,Γ′
0, then by induction on f ′ with the partition ⟨Γ′

0,Γ1⟩ we obtain
– a formula D,
– a derivation g′ : A | Γ′

0 ⊢ D,
– a derivation h′ : D | Γ1 ⊢ C, such that
– var(D) ⊆ var(A,Γ′

0) ∩ var(Γ1, C).
In this case, the interpolant formula for f is D, and two desired derivations are
g = pass g′ and h = h′. The variable condition follows directly from the inductive
hypothesis.

Case f = ⊗R(f ′, f ′′). Let f ′ : S | Λ ⊢ A and f ′′ : − | Ω ⊢ B, so that Γ = Λ,Ω. We
need to check how the latter splitting of Γ compares to the given partition ⟨Γ0,Γ1⟩.
There are two possibilities:

• Γ0 is fully contained in Λ. This means that Λ = Γ0,Γ
′
1 and Γ1 = Γ′

1,Ω. Then
f ′ : S | Γ0,Γ

′
1 ⊢ A and f ′′ : − | Ω ⊢ B. In this case, by induction on f ′ with the

partition ⟨Γ0,Γ
′
1⟩ we obtain

– a formula D,
– a derivation g′ : S | Γ0 ⊢ D,
– a derivation h′ : D | Γ′

1 ⊢ A such that
– var(D) ⊆ var(S,Γ0) ∩ var(Γ′

1, A).
The desired interpolant formula is D and the desired derivations are g = g′ and
h = ⊗R(h′, f ′′) : D | Γ′

1,Ω ⊢ A ⊗ B. The variable condition is satisfied because
var(D) ⊆ var(Γ′

1, A) ⊆ var(Γ′
1,Ω, A⊗B).

• Γ0 splits between Λ and Ω. This means that Γ0 = Λ,Γ′
0 and Ω = Γ′

0,Γ1, and
Γ′
0 is non-empty. Then f ′ : S | Λ ⊢ A and f ′′ : − | Γ′

0,Γ1 ⊢ B. In this case, by
induction on f ′ with the partition ⟨Λ, [ ]⟩ and on f ′′ with the partition ⟨Γ′

0,Γ1⟩,
respectively, we obtain
– formulae E and F ,
– derivations g′ : S | Λ ⊢ E and g′′ : − | Γ′

0 ⊢ F ,
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– derivations h′ : E | ⊢ A and h′′ : F | Γ1 ⊢ B, such that
– var(E) ⊆ var(S,Λ) ∩ var(A), and
– var(F ) ⊆ var(Γ′

0) ∩ var(Γ1, B).
The desired interpolant formula is D = E ⊗ F and the desired derivations are

g =

g′

S | Λ ⊢ E
g′′

− | Γ′
0 ⊢ F

S | Λ,Γ′
0 ⊢ E ⊗ F

⊗R
h =

h′

E | ⊢ A

h′′

F | Γ1 ⊢ B

− | F,Γ1 ⊢ B
pass

E | F,Γ1 ⊢ A⊗B
⊗R

E ⊗ F | Γ1 ⊢ A⊗B
⊗L

The variable condition is satisfied because var(E ⊗ F ) = var(E) ∪ var(F ) ⊆
var(S,Λ) ∪ var(Γ′

0) = var(S,Λ,Γ′
0) and var(E ⊗ F ) = var(E) ∪ var(F ) ⊆ var(A) ∪

var(Γ1, B) = var(A,Γ1, B) = var(Γ1, A⊗B).
Case f = ⊸L(f ′, f ′′). Let f ′ : − | Λ ⊢ A and f ′′ : B | Ω ⊢ C, so that Γ = Λ,Ω. Again
we check how the latter splitting of Γ compares to the given partition ⟨Γ0,Γ1⟩. There
are two possibilities:

• Γ1 is fully contained in Ω. This means that Γ0 = Λ,Γ′
0 and Ω = Γ′

0,Γ1. Then
f ′ : − | Λ ⊢ A and f ′′ : B | Γ′

0,Γ1 ⊢ C. In this case, by induction on f ′′ with the
partition ⟨Γ′

0,Γ1⟩ we obtain
– a formula D,
– a derivation g′′ : B | Γ′

0 ⊢ D,
– a derivation h′′ : D | Γ1 ⊢ C such that
– var(D) ⊆ var(B,Γ′

0) ∩ var(Γ1, C).
The desired interpolant formula is D and the desired derivations are g =
⊸L(f ′, g′′) : A ⊸ B | Λ,Γ′

0 ⊢ D and h = h′′. The variable condition is satisfied
because var(D) ⊆ var(B,Γ′

0) ⊆ var(A ⊸ B,Λ,Γ′
0).

• Γ1 splits between Λ and Ω. This means that Λ = Γ0,Γ
′
1 and Γ1 = Γ′

1,Ω, and Γ′
1

is non-empty. Then f ′ : − | Γ0,Γ
′
1 ⊢ A and f ′′ : B | Ω ⊢ C. Our goal is to find

a formula D and derivations g : A ⊸ B | Γ0 ⊢ D and h : D | Γ′
1,Ω ⊢ C. By

induction on f ′′ with the partition ⟨[ ],Ω⟩ we obtain
– a formula E,
– a derivation g′′ : B | ⊢ E,
– a derivation h′′ : E | Ω ⊢ C such that
– var(E) ⊆ var(B) ∩ var(Ω, C).

We also apply the cMMIP procedure (which, remember, is proved by mutual
induction with sMIP) on the derivation f ′ with the partition ⟨Γ0,Γ

′
1, [ ]⟩ and

obtain
– a partition ⟨∆1, . . . ,∆n⟩ of Γ′

1,
– a list of formulae D1, . . . , Dn,
– a derivation g′ : − | Γ0, D1, . . . , Dn ⊢ A,
– a list of derivations h′

i : − | ∆i ⊢ Di, for i ∈ [1, . . . , n], such that
– var(D1, . . . , Dn) ⊆ var(∆1, . . . ,∆n) ∩ var(Γ0, A).
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The desired interpolant formula is D = D1 ⊸ (D2 ⊸ (. . . (Dn ⊸ E) . . . )). The
desired derivations g and h are constructed as follows:

g =

g′

− | Γ0, D1, . . . , Dn ⊢ A
g′′

B | ⊢ E

A ⊸ B | Γ0, D1, . . . , Dn ⊢ E
⊸L

A ⊸ B | Γ0 ⊢ D1 ⊸ (. . . (Dn ⊸ E) . . . )
⊸R∗

h =

[h′
i]

[− | ∆i ⊢ Di]i
h′′

E | Ω ⊢ C

D1 ⊸ (. . . (Dn ⊸ E) . . . ) | ∆1, . . . ,∆n,Ω ⊢ C
⊸L∗

Notice that Γ′
1 = ∆1, . . . ,∆n, so the variable condition is easy to check.

Proof of cMMIP. We proceed by induction on the structure of f .
Case f = ax. Suppose f = ax : A | ⊢ A, which means that Γ0 = Γ1 = Γ2 = [ ]. In
this case, the desired partition of Γ1 is the empty one ⟨[ ]⟩, i.e. n = 0. The desired lists
of formulae Di and of derivations hi are also empty. The desired derivation g is ax.
Case f = IR. Similar to the previous one.
Case f = IL f ′. Given a derivation f ′ : − | Γ ⊢ C, by induction on f ′ with the same
partition ⟨Γ0,Γ1,Γ2⟩ of Γ we obtain

– a partition ⟨∆0, . . . ,∆n⟩ of Γ1,
– a list of interpolant formulae D1, . . . , Dn,
– a derivation g′ : − | Γ0, D1, . . . , Dn,Γ2 ⊢ C,
– derivations h′

i : − | ∆i ⊢ Di, for i ∈ [1, . . . , n], such that
– var(D1, . . . , Dn) ⊆ var(∆1, . . . ,∆n) ∩ var(S,Γ0,Γ2, C) for all X.

The desired partition of Γ1 is ⟨∆0, . . . ,∆n⟩, the desired list of interpolant formulae is
D1, . . . , Dn. The desired derivations are g = IL g′ and hi = h′

i for i ∈ [1, . . . , n]. The
variable condition is automatically satisfied.
Cases f = ⊗L f ′ and f = ⊸R f ′. Analogous to the previous case.
Case f = pass f ′. Let f ′ : A | Γ′ ⊢ C and Γ = A,Γ′. There are subcases determined by
the partition ⟨Γ0,Γ1,Γ2⟩ of Γ. The most interesting case is the one where Γ0 = [ ] and
Γ1 = A,Γ′

1, so that Γ′ = Γ′
1,Γ2. The other possible cases are handled similarly to the

IL case discussed above. We apply the sMIP procedure (which, remember, is proved by
mutual induction with cMMIP) on the derivation f ′ and the partition ⟨Γ′

1,Γ2⟩, which
gives us

– a formula D,
– a derivation g′ : A | Γ′

1 ⊢ D,
– a derivation h′ : D | Γ2 ⊢ C, such that
– var(D) ⊆ var(A,Γ′

1) ⊆ var(Γ2, C).
The desired partition of A,Γ′

1 is the singleton context [A,Γ′
1], i.e. n = 1. The desired

list of interpolant formulae is the singleton [D]. The desired derivation g is pass g′ :
− | A,Γ′

1 ⊢ D and the desired list of derivations hi is the singleton consisting only of
pass h′ : − | D,Γ2 ⊢ C. The variable condition follows from the inductive hypothesis.
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Case f = ⊗R(f ′, f ′′). Let f ′ : S | Λ ⊢ A and f ′′ : − | Ω ⊢ B, so that Γ = Λ,Ω. We
need to check how the latter splitting of Γ compares to the given partition ⟨Γ0,Γ1,Γ2⟩.
There are three possibilities:

• Γ1 is fully contained in Ω. This means that Γ0 = Λ,Γ′
0 and Ω = Γ′

0,Γ1,Γ2. Then
f ′ : S | Λ ⊢ A and f ′′ : − | Γ′

0,Γ1,Γ2 ⊢ B. By induction on f ′′ with partition
⟨Γ′

0,Γ1,Γ2⟩ we obtain
– a partition ⟨∆0, . . . ,∆n⟩ of Γ1,
– a list of interpolant formulae D1, . . . , Dn,
– a derivation g′′ : − | Γ′

0, D1, . . . , Dn,Γ2 ⊢ B,
– derivations h′′

i : − | ∆i ⊢ Di, for i ∈ [1, . . . , n], such that
– var(D1, . . . , Dn) ⊆ var(∆1, . . . ,∆n) ∩ var(Γ′

0,Γ2, B).
The desired partition of Γ1 is ⟨∆0, . . . ,∆n⟩. The desired list of interpolant for-
mulae is D1, . . . , Dn. The desired derivation g is ⊗R(f ′, g′′) and the desired
derivation hi is h′′

i for i ∈ [1, . . . , n]. The variable condition is satisfied because
var(D1, . . . , Dn) ⊆ var(Γ′

0,Γ2, B) ⊆ var(S,Λ,Γ′
0,Γ2, A⊗B).

• Γ1 is fully contained in Λ. This case is analogous to the one above, but now we
have to induct on the derivation f ′ instead of f ′′.

• Γ1 splits between Λ and Ω. This means that Γ1 = Γ′
1,Γ

′′
1 and Λ = Γ0,Γ

′
1 and Ω =

Γ′′
1 ,Γ2, and Γ′′

1 is non-empty. Then f ′ : S | Γ0,Γ
′
1 ⊢ A and f ′′ : − | Γ′′

1 ,Γ2 ⊢ B.
By induction on f ′ with the partition ⟨Γ0,Γ

′
1, [ ]⟩ and on f ′′ with the partition

⟨[ ],Γ′′
1 ,Γ2⟩, respectively, we obtain

– a partition ⟨∆0, . . . ,∆n⟩ of Γ′
1 and a partition ⟨∆n+1, . . . ,∆m⟩ of Γ′′

1 ,
– two lists of interpolant formulae D1, . . . , Dn and Dn+1, . . . , Dm,
– derivations g′ : S | Γ0, D1, . . . , Dn ⊢ A and g′′ : − | Dn+1, . . . , Dm,Γ2 ⊢ B,
– derivations h′

i : − | ∆i ⊢ Di, for i ∈ [1, . . . , n], and derivations h′
j : − | ∆j ⊢

Dj , for j ∈ [n+ 1, . . . ,m], such that
– var(D1, . . . , Dn) ⊆ var(∆1, . . . ,∆n) ∩ var(S,Γ0, A) and var(Dn+1, . . . , Dm) ⊆
var(∆n+1, . . . ,∆m)var(Γ2, B).

The desired partition of Γ′
1,Γ

′′
1 is ⟨∆0, . . . ,∆n,∆n+1, . . . ,∆m⟩. The desired list

of interpolant formulae is D1, . . . , Dn, Dn+1, . . . , Dm. The desired derivation g is

g′

S | Γ0, D1, . . . , Dn ⊢ A
g′′

− | Dn+1, . . . , Dm,Γ2 ⊢ B

S | Γ0, D1, . . . , Dn, Dn+1, . . . , Dm,Γ2 ⊢ A⊗B
⊗R

while the desired derivation hi is h
′
i for i ∈ [1, . . . ,m]. For the variable condition,

we have var(D1, . . . , Dm) ⊆ var(S,Γ0, A,Γ2, B) = var(S,Γ0,Γ2, A⊗B).

Notice that cMMIP is invoked in the proof of sMIP, in the case f = ⊸L(f ′, f ′′).
Conversely, sMIP is invoked in the proof of cMMIP, in the case f = pass f ′. The
proof of Theorem 4 describes an effective procedure for building interpolant formulae
and derivations. This procedure is terminating, since each recursive call happens on
a derivation with height strictly smaller than the one of the derivation in input. This
behaviour is further confirmed in our Agda formalization, where the inductive proof
of sMIP/cMMIP is accepted by the proof assistant as terminating.
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Example 5. Let us illustrate the interpolation procedure on a simple example. We
compute the stoup Maehara interpolant of the end-sequent in the derivation

X | ⊢ X
ax

− | X ⊢ X
pass

Y | ⊢ Y
ax

W | ⊢ W
ax

− | W ⊢ W
pass

Y | W ⊢ Y ⊗W
⊗R

X ⊸ Y | X,W ⊢ Y ⊗W
⊸L

− | X ⊸ Y,X,W ⊢ Y ⊗W
pass

Z | ⊢ Z
ax

(Y ⊗W ) ⊸ Z | X ⊸ Y,X,W ⊢ Z
⊸L

(6)

with the partition ⟨[X ⊸ Y ], [X,W ]⟩.
Following the procedure in the proof of Theorem 4, we are in the case when the last
rule is ⊸L and both lists in the partition ⟨[X ⊸ Y ], [X,W ]⟩ move to the context of the
left premise. This means that we need to apply the cMMIP procedure to the derivation
pass(⊸L(pass ax,⊗R(ax, pass ax))) : − | X ⊸ Y,X,W ⊢ Y ⊗W (witnessing the left
premise of ⊸L) with the partition ⟨[X ⊸ Y ], [X,W ], [ ]⟩. This produces

– a partition ⟨[X], [W ]⟩ of [X,W ],
– a list of interpolant formulae [X,W ], and
– derivations pass(⊸L(pass ax,⊗R(ax, pass ax))) : − | X ⊸ Y,X,W ⊢ Y ⊗ W ,

pass ax : − | X ⊢ X, and pass ax : − | W ⊢ W ,
satisfying the variable condition. Next, we need to apply the sMIP procedure on the
derivation ax : Z | ⊢ Z with the partition ⟨[ ], [ ]⟩ which produces two derivations
ax : Z | ⊢ Z and ax : Z | ⊢ Z. Then we obtain the desired interpolant formula
X ⊸ (W ⊸ Z) and the desired derivations

g =

X | ⊢ X
ax

− | X ⊢ X
pass

Y | ⊢ Y
ax

W | ⊢ W
ax

− | W ⊢ W
pass

Y | W ⊢ Y ⊗W
⊗R

X ⊸ Y | X,W ⊢ Y ⊗W
⊸L

− | X ⊸ Y,X,W ⊢ Y ⊗W
pass

Z | ⊢ Z
ax

(Y ⊗W ) ⊸ Z | X ⊸ Y,X,W ⊢ Z
⊸L

(Y ⊗W ) ⊸ Z | X ⊸ Y,X ⊢ W ⊸ Z
⊸R

(Y ⊗W ) ⊸ Z | X ⊸ Y ⊢ X ⊸ (W ⊸ Z)
⊸R

h =
X | ⊢ X

ax

− | X ⊢ X
pass

W | ⊢ W
ax

− | W ⊢ W
pass

Z | ⊢ Z
ax

W ⊸ Z | W ⊢ Z
⊸L

X ⊸ (W ⊸ Z) | X,W ⊢ Z
⊸L

Notice that this is crucially different from the result that Maehara’s method would
produce on the corresponding derivation in the associative Lambek calculus (with ⊗).
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The translation of derivation (6) in the associative Lambek calculus is

X ⊢ X
ax Y ⊢ Y

ax
W ⊢ W

ax

Y,W ⊢ Y ⊗W
⊗R

Y/X,X,W ⊢ Y ⊗W
/L

Z ⊢ Z
ax

Z/(Y ⊗W ), Y/X,X,W ⊢ Z
/L

Using the Maehara interpolation procedure defined in [5], the resulting interpolant
formula would be Z/(X ⊗W ). Again, X and Y can be tensored in the latter formula
since the Lambek calculus admits a general left rule for ⊗.

We conclude this section showing how Craig interpolation follows from stoup
Maehara interpolation.
Theorem 6. For any formulae A and C, if A ⊸ C is provable in SkNMILL, then
there exists a formula D such that both A ⊸ D and D ⊸ C are provable, and
var(D) ⊆ var(A) ∩ var(C).

Proof. A ⊸ C being provable means that there is a derivation f : − | ⊢ A ⊸ C. By
invertibility of the rule ⊸R, we obtain a derivation f ′ : − | A ⊢ C. Then by running
the sMIP procedure on f ′ with the partition ⟨[A], [ ]⟩, we get

– a formula D,
– g′ : − | A ⊢ D,
– h′ : D | ⊢ C, and
– var(D) ⊆ var(A) ∩ var(C).

The formulae A ⊸ D and D ⊸ C are proved by the derivations ⊸R g′ : − | ⊢ A ⊸
D and ⊸R(pass h′) : − | ⊢ D ⊸ C, respectively. The variable condition is satisfied
automatically.

6 Proof-Relevant Interpolation

So far we have established a procedure sMIP for effectively splitting a derivation
f : S | Γ1,Γ2 ⊢ C in two derivations g : S | Γ1 ⊢ D and h : − | Γ2 ⊢ C, with D
being “minimal” in the sense of satisfying an appropriate variable condition. A nat-
ural question arises: what happens when we compose derivations g and h using the
admissible scut rule? Intuition suggests that we should get back the original deriva-
tion f , at least modulo η-conversions and permutative conversions. This in fact what
happens, and this section is dedicated to proving this result.

Analogously, the cMMIP procedure splits a derivation f : S | Γ0,Γ1,Γ2 ⊢ C in
a tuple of derivations [hi : − | ∆i ⊢ Di]i and g : S | Γ0, D1, . . . , Dn,Γ2 ⊢ C, with
D1, . . . , Dn satisfying an appropriate variable condition. If we compose [hi] and g using
the admissible ccut∗ rule, we get back the original derivation modulo ⊜.

Similar questions have been considered by Čubrić [22] in the setting of intuitionistic
propositional logic and by Saurin [23] for (extensions) of classical linear logic. They
call proof-relevant interpolation the study of interpolation procedures in relationship
to cut rules and equivalence of proofs, like our ⊜. In particular, Čubrić and Saurin
show that interpolation procedures are in a way “right inverses” of cut rules. Here we
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show the same for SkNMILL: the sMIP procedure is a right inverse of scut, while the
cMMIP procedure is a right inverse of ccut∗.
Theorem 7.
(i) Let g : S | Γ0 ⊢ D and h : D | Γ1 ⊢ C be the derivations obtained by applying the

sMIP procedure on a derivation f : S | Γ ⊢ C with the partition ⟨Γ0,Γ1⟩. Then
scut(g, h) ⊜ f .

(ii) Let g : S | Γ0, D1, . . . , Dn,Γ2 ⊢ C and hi : − | ∆i ⊢ Di for i ∈ [1, . . . , n] be
derivations obtained by applying the cMMIP procedure on a derivation f : S | Γ ⊢
C with the partition ⟨Γ0,Γ1,Γ2⟩. Then ccut∗([hi], g) ⊜ f .

Proof. Similar to the proof of Theorem 4, statements (i) and (ii) are proved by mutual
induction on the structure of derivations. We focus on the proof of statement (i),
since (ii) is proved in a similar manner. We refer the interested reader to our Agda
formalization for all the technical details.

The proof relies on the computational behaviour of the admissible rules scut and
ccut. The reader might want to consult our previous work [16, 19] for the explicit
construction of the cut rules that we employ in this proof.
Case f = ax. The goal reduces to scut(ax, ax) ⊜ ax, which holds by definition of scut.
Case f = IR. The goal reduces to scut(IR, IL IR) ⊜ IR, which holds by definition of scut.

Case f = IL f ′. The goal reduces to scut(IL g′, h′) ⊜ IL f ′2. By definition of scut we
have scut(IL g′, h′) = IL (scut(g′, h′)). By inductive hypothesis on f ′ and congruence
(which here allow us to rewrite under IL), the latter is ⊜-related to IL f ′.
Cases f = ⊗L f ′ and f = ⊸R f ′. Analogous to the previous case. Though the case of
⊸R requires an additional application of Proposition 3.
Case f = pass f ′. Two cases determined by whether Γ0 is empty or not.

• In the first case, the goal reduces to scut(IR, IL(pass f ′)) ⊜ pass f ′, which holds
by definition of scut.

• In the second case, the goal reduces to scut(pass g′, h′) ⊜ pass f ′. By definition
of scut we have scut(pass g′, h′) = pass(scut(g′, h′)). By inductive hypothesis on
f ′ and congruence, the latter is ⊜-related to pass f ′.

Case f = ⊗R(f ′, f ′′). Two case determined by whether Γ0 is fully contained in the
context of the left premise or not.

• In the first case, the goal reduces to scut(g′,⊗R(h′, f ′′)) ⊜ ⊗R(f ′, f ′′). By
Proposition 3, we have scut(g′,⊗R(h′, f ′′)) ⊜ ⊗R(scut(g′, h′), f ′′). By inductive
hypothesis on f ′ and congruence, the latter is ⊜-related to ⊗R(f ′, f ′′).

• In the second case, the goal reduces to showing that the derivation
scut(⊗R(g, h′),⊗L (⊗R(h′, pass‘h′′))) is ⊜-related to ⊗R(f ′, f ′′). This is witnessed
by the following sequence of equivalences:

scut(⊗R(g, h′),⊗L(⊗R(h′, pass‘h′′)))
= scut(g′,⊗R(h′, scut(g′′, h′′))) (by definition of scut)
⊜ ⊗R(scut(g′, h′), scut(g′′, h′′)) (by Proposition 3)
⊜ ⊗R(f ′, f ′′) (by ind. hyp. on f ′ and f ′′

and congruence)

2Here g′ and h′ are as in the proof of Theorem 4. We follow the same convention for the forthcoming
cases too, where name of derivations will match the ones in the proof of Theorem 4
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Case f = ⊸L(f ′, f ′′). Two case determined by whether Γ1 is fully contained in the
context of the right premise or not.

• In the first case, the goal reduces to scut(⊸L(f ′, g′′), h′′) ⊜ ⊸L(f ′, f ′′). By defi-
nition of scut, we have scut(⊸L(f ′, g′′), h′′) = ⊸L(f ′, (scut(g′′, h′′)). By inductive
hypothesis on f ′′ and congruence, the latter is ⊜-related to ⊸L(f ′, f ′′).

• In the second case, the goal reduces to showing that the derivation
scut(⊸R∗(⊸L(g′, g′′)),⊸L∗([h′

i], h
′′)) is ⊜-related to ⊸L(f ′, f ′′). This is wit-

nessed by the following sequence of equivalences:

scut(⊸R∗(⊸L(g′, g′′)),⊸L∗([h′
i], h

′′))
⊜ scut(ccut∗([h′

i],⊸L(g′, g′′)), h′′) (by Proposition 2)
= ⊸L(ccut∗([h′

i], g
′), scut(h′′, g′′)) (by definition of scut and ccut∗)

⊜ ⊸L(f ′, f ′′) (by ind. hyp. on f ′ and f ′′

and congruence)

The final step employs the “inductive hypothesis” on f ′, which in this case means
the validity of statement (ii) for derivation f ′ (remember that statements (i) and
(ii) are proved simultaneously by structural induction on derivations).

7 Conclusions and Future Work

This paper describes a proof of Craig interpolation for the semi-substructural logic
SkNMILL. It employs proof-theoretic techniques, since it relies on cut elimination and
it manipulates sequent calculus derivations directly. As common when proving Craig
interpolation for other substructural logics, the proof strategy follows a variant of
Maehara’s method [8]. SkNMILL is an intermediate logic between the (I,⊗, /)-fragment
of non-commutative intuitionistic linear logic and its fragment without I and ⊗. Our
proof of Craig interpolation clearly reflects this fact: we need to prove a stoup Maehara
interpolation property (as in the Lambek calculus [9]) simultaneously with a context
Maehara multi-interpolation property (similar to the one used for the product-free
fragment [10]).

Following the category-theoretic considerations of Čubrić [22], we proved a proof-
relevant form of interpolation, showing that the interpolation procedures are right
inverses of the corresponding admissible cut rules. The main aspect missing in our
work (and, as far as we know, the whole literature on Craig interpolation) is the char-
acterization of the Craig interpolant via a universal property, in the sense of category
theory. In fact, Čubrić’s characterization of interpolants is merely an existence prop-
erty, there is no mention of a uniqueness property. This is analogous to the distinction
between weak and non-weak (co)limits in category theory. Alternatively, we may ask
whether the interpolation procedures are also left inverses of the cut rules.

These questions naturally lead to another one: what is the correct notion of
“equality” between interpolants? First, notice that in SkNMILL interpolants satisfying
sMIP for a fixed sequent S | Γ ⊢ C and partition ⟨Γ1,Γ2⟩ of Γ can be organized in a
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set of triples:

{(D, g : S | Γ1 ⊢ D,h : D | Γ2 ⊢ C) | var(D) ⊆ var(S,Γ0) ∩ var(Γ1, C)}

Many equivalence relation can potentially be defined on these triples:
• (D, g, h) ∼ (D′, g′, h′) if and only if D = D′, g = g′ and h = h′. This option
is definitely too strict, since it does not account for the fact that we consider
derivations that differ by some η-conversion or permutative conversion as equal.
A better option would then be:

• (D, g, h) ∼ (D′, g′, h′) if and only if D = D′, g ⊜ g′ and h ⊜ h′. This might still
be too restrictive. For example, in the Lambek calculus, we can run Maehara’s
method on two derivations f and f ′ for the same sequent that only differ by
a permutative conversion, and obtain different interpolant formulae D and D′.
The same phenomenon could also happen in SkNMILL. A relaxation of this notion
would then be:

• (D, g, h) ∼ (D′, g′, h′) if and only if there is an isomorphism d : D | ⊢ D′ such
that scut(g, d) ⊜ g′ and h ⊜ scut(d, h′). By isomorphism here we mean that there
exists a derivation h−1 : D′ | ⊢ D such that scut(h, h′) ⊜ ax and scut(h′, h) ⊜ ax.
Yet another weaker option could be:

• ∼ is the equivalence relation generated by the relation: (D, g, h) ∼0 (D′, g′, h′)
if and only if there exists a derivation d : D | ⊢ D′ such that scut(g, d) ⊜ g′

and h ⊜ scut(d, h′). More explicitly, triples (D, g, h) and (D′, g′, h′) are ∼-related
when there exists a list of formulae D1, . . . , Dn and a “zigzag” of derivations like

d1 : D | ⊢ D1, d2 : D2 | ⊢ D1, d3 : D2 | ⊢ D3, . . . dn : Dn | ⊢ D′

such that, when appropriately composed with these di-s, g is ⊜-related to g′

and h is ⊜-related to h′. At first sight, this might seem like a weird notion of
equality between interpolants, but it is in fact a very natural one to require
from a category-theoretic perspective, since it would be the one characterizing
interpolants as some kind of colimit/coend.

The attentive reader might have noticed that, while we consider sets of derivations
quotiented by the congruence relation ⊜, we do not prove that the interpolation proce-
dures of Theorem 4 are well-defined wrt. ⊜, e.g. that sMIP sends ⊜-related derivations
to the “same” triple (D, g, h). The reason for this omission comes again from that fact
that we do not yet know what is the appropriate notion of “sameness” in this case.

We do not want to continue our speculations in this conclusive section and leave
further investigations on this topic to future work. Our first step will be understanding
the universal property of interpolants for logics in which the Maehara interpolation
property is simpler than in SkNMILL, e.g. in the associative Lambek calculus. Another
venue of future work would be the extension of the results of this paper to other semi-
substructural logics, e.g. extensions with a notion of skew exchange [25] or additive
connectives [20]. In the latter setting we might also ask whether the logic satisfies a
uniform interpolation property in the sense of [26].

23



References

[1] Craig, W.: Three uses of the herbrand-gentzen theorem in relating model theory
and proof theory. Journal of Symbolic Logic 22(3), 269–285 (1957) https://doi.
org/10.2307/2963594

[2] Beth, E.W.: On padoa’s method in the theory of definition. Indaga-
tiones Mathematicae (Proceedings) 56, 330–339 (1953) https://doi.org/10.1016/
s1385-7258(53)50042-3

[3] Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. ACM SIGPLAN Notices 39(1), 232–244 (2004) https://doi.org/10.1145/
982962.964021

[4] Lambek, J.: The mathematics of sentence structure. American Mathematical
Monthly 65(3), 154–170 (1958) https://doi.org/10.2307/2310058
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