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Abstract

This work studies the proof theory and ternary relational semantics of
left (right) skew monoidal closed categories and skew monoidal bi-closed
categories—both symmetric and non-symmetric—from the perspective of
non-associative Lambek calculus. Uustalu et al. used sequents with stoup
(the leftmost position of an antecedent that can be either empty or a
single formula) to deductively model left skew monoidal closed categories,
yielding results regarding proof identities and categorical coherence. How-
ever, their syntax does not work well when modeling right skew monoidal
closed and skew monoidal bi-closed categories, whether symmetric or non-
symmetric.

We solve the problem via more flexible and equivalent frameworks
to characterize the categories above: tree sequent calculus (where an-
tecedents are binary trees) and axiomatic calculus (where antecedents are
a single formula), inspired by works on non-associative Lambek calculus.
Moreover, we prove that the axiomatic calculi are sound and complete
with respect to their ternary relational models. We also prove a corre-
spondence between frame conditions and structural laws, providing an
algebraic way to understand the relationship between the left and right
skew monoidal closed categories, encompassing both symmetric and non-
symmetric variants.

1 Introduction
Substructural logics are logic systems that lack at least one of the structural
rules, weakening, contraction, and exchange. Joachim Lambek’s syntactic cal-
culus [18] is a well-known example that disallows weakening, contraction, and
exchange. Another example, linear logic, proposed by Jean-Yves Girard [14],
is a substructural logic in which weakening and contraction are in general dis-
allowed but can be recovered for some formulae via modalities. Substructural
logics have been found in numerous applications from computational analysis
of natural languages to the development of resource-sensitive programming lan-
guages.

Left skew monoidal categories [25] are a weaker variant of MacLane’s monoidal
categories where the structural morphisms of associativity and unitality are not
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required to be bidirectional, they are natural transformations with a partic-
ular orientation. Therefore, they can be seen as semi-associative and semi-
unital variants of monoidal categories. Left skew monoidal categories arise
naturally in the semantics of programming languages [2], while the concept
of semi-associativity is connected with combinatorial structures like the Tamari
lattice and Stasheff associahedra [36, 21].

In recent years, Tarmo Uustalu, Niccolò Veltri, and Noam Zeilberger started
a research project on semi-substructural logics, which is inspired by a series of de-
velopments on left skew monoidal categories and related variants by Szlachányi,
Street, Bourke, Lack and others [25, 16, 24, 17, 8, 5, 6, 7].

We call the languages of left skew monoidal categories and their variants
semi-substructural logics, because they are intermediate logics between (cer-
tain fragments of) non-associative and associative intuitionistic linear logic (or
Lambek calculus). Semi-associativity and semi-unitality are encoded as follows.
Sequents are in the form S | Γ ⊢ A, where the antecedent consists of an op-
tional formula S, called stoup, adapted from Girard [15], and an ordered list of
formulae Γ. The succedent is a single formula A. We restrict the application of
introduction rules in an appropriate way to allow only one of the directions of
associativity and unitality.

This approach has successfully captured languages for a variety of categories,
including (i) left skew semigroup [36], (ii) left skew monoidal [30], (iii) left skew
(prounital) closed [28], (iv) left skew monoidal closed categories [26, 32], and (v)
left distributive skew monoidal categories with finite products and coproducts
[33] through skew variants of the fragments of non-commutative intuitionistic
linear logic consisting of combinations of connectives (I,⊗,⊸,∧,∨). Addition-
ally, discussions have covered partial normality conditions, in which one or more
structural morphisms are allowed to have an inverse [29], as well as extensions
with skew exchange à la Bourke and Lack [31, 33, 34].

In all of the aforementioned works, internal languages of left skew monoidal
categories and their variants are characterized in a similar way which we call
sequent calculus à la Girard. These calculi with sequents of the form S | Γ ⊢
A are cut-free and by their rule design, they are decidable. Moreover, they
all admit sound and complete subcalculi inspired by Andreoli’s focusing [3] in
which rules are restricted to be applied in a specific order. A focused calculus
provides an algorithm to solve both the proof identity problems for its non-
focused calculus and coherence problems for its corresponding variant of left
skew monoidal category.

By reversing all structural morphisms and modifying coherence conditions
in left skew monoidal closed categories, right skew monoidal closed categories
emerge [27]. Moreover, skew monoidal bi-closed categories are defined by appro-
priately integrating left and right skew monoidal closed structures. It is natural
for us to consider sound sequent calculi for these categories. However, the im-
plication rules are not well-behaved when just modeling right skew monoidal
closed categories with sequent calculus à la Girard.

The problem stems from the skew structure concealed within the flat an-
tecedent of S | Γ ⊢ A. While the antecedent S | Γ is defined similarly to an
ordered list, it is actually a tree associating to the left. We start in Section 2,
by introducing the sequent calculus à la Girard (LSkG) for left skew monoidal
closed categories from [26] and its equivalent sequent calculus à la Lambek
(LSkT), which is inspired by sequent calculus for non-associative Lambek calcu-
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lus [9, 22] with trees as antecedents.
Associative (non-associative) Lambek calculus can be extended with permu-

tation by adding a rule of exchange [22]. In the commutative version of the
Lambek calculus, two implications ⧹ and ⧸ collapse into one, i.e. for any for-
mulae A and B, A⧹B is logically equivalent to B⧸A. This leads to a natural
question to consider semi-substructural logics with permutation. An immediate
idea is adding an axiom of permutation directly into the calculus. However, the
axiom ex makes the calculus fully normal, i.e. α−1, λ−1, and ρ−1 are provable.
Veltri addressed the addition of permutation to sequent calculi for symmetric
skew monoidal and skew closed categories [31, 34]. Here, we extend this work
by generalizing these results to symmetric right skew categories and symmetric
skew monoidal bi-closed categories.

In Section 3, we introduce definitions of left (right) skew monoidal closed
categories and skew monoidal bi-closed categories, and normality conditions
for skew categories. In Section 4, we describe two calculi that characterize skew
monoidal bi-closed categories: one is an axiomatic calculus (SkMBiCA), while the
other is a sequent calculus (SkMBiCT) similar to the multimodal non-associative
Lambek calculus [20]. In Section 5, we introduce the relational semantics for
SkMBiCA via preordered sets of possible worlds with ternary relations. Further-
more, we show a correspondence theorem (Theorem 5.7) between conditions
on ternary relations and structural laws on any frame. The theorem allows
us to prove a thin version of main theorems in [27]. Finally, in Section 6, we
incorporate commutativity into semi-substructural logics from both syntactic
and semantic perspective following the method in [31, 34] and extend the re-
sult to symmetric right skew categories and symmetric skew monoidal bi-closed
categories.

Publication History This paper is an extended version of [35]. Compared
to the conference version, we have added Lemmata 2.10 and 4.3, which are
essential to the proof of equivalence of calculi (LSkG and LSkT for the former
and SkMBiCA and SkMBiCT for the latter) and detailed the proof of Theorem 4.5.
The whole Section 6, studying the syntax and semantics of semi-substructural
logics with permutation, is new.

2 Sequent Calculus
We recall the sequent calculus à la Girard for left skew monoidal closed cat-
egories from [26], which is a skew variant of non-commutative multiplicative
intuitionistic linear logic.

Formulae (Fma) in LSkG are inductively generated by the grammar A,B ::=
X | I | A⊗B | A ⊸ B, where X comes from a set At of atoms, I is a multiplicative
unit, ⊗ is multiplicative conjunction and ⊸ is a linear implication.
A sequent is a triple of the form S | Γ ⊢G A, where the antecedent splits
into: an optional formula S, called stoup [15], and an ordered list of formulae
Γ and succedent A is a single formula. The symbol S consistently denotes a
stoup, meaning S can either be a single formula or empty, indicated as S = −;
furthermore, X, Y , and Z always represent atomic formulae.
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Definition 2.1. Derivations in LSkG are generated recursively by the following
rules:

A | ⊢G A
ax
− | Γ ⊢G A B | ∆ ⊢G C

A ⊸ B | Γ,∆ ⊢G C
⊸L

− | Γ ⊢G C

I | Γ ⊢G C
IL

A | B,Γ ⊢G C

A⊗B | Γ ⊢G C
⊗L

A | Γ ⊢G C

− | A,Γ ⊢G C
pass

S | Γ, A ⊢G B

S | Γ ⊢G A ⊸ B
⊸R

− | ⊢G I
IR

S | Γ ⊢G A − | ∆ ⊢G B

S | Γ,∆ ⊢G A⊗B
⊗R

The inference rules of LSkG are similar to the ones in the sequent calculus for
non-commutative multiplicative intuitionistic linear logic (NMILL) [1], but with
some crucial differences:

1. The left logical rules IL, ⊗L and ⊸L, read bottom-up, are only allowed to
be applied on the formula in the stoup position.

2. The right tensor rule ⊗R, read bottom-up, splits the antecedent of a se-
quent S | Γ,∆ ⊢G A⊗B and in the case where S is a formula, S is always
moved to the stoup of the left premise, even if Γ is empty.

3. The presence of the stoup distinguishes two types of antecedents, A | Γ
and − | A,Γ. The structural rule pass (for ‘passivation’), read bottom-
up, allows the moving of the leftmost formula in the context to the stoup
position whenever the stoup is empty.

4. The logical connectives of NMILL (and associative Lambek calculus) typi-
cally include two ordered implications ⧹ and ⧸, which are two variants of
linear implication arising from the removal of the exchange rule from intu-
itionistic linear logic. In LSkG, only the right residuation (B⧸A = A ⊸ B)
of Lambek calculus is present.

For a more detailed explanation and a linear logical interpretation of LSkG, see
[26, Section 2].

Theorem 2.2. LSkG is cut-free, i.e. the rules

f
S | Γ ⊢G A

g
A | ∆ ⊢G C

S | Γ,∆ ⊢G C
scut

f
− | Γ ⊢G A

g
S | ∆0, A,∆1 ⊢G C

S | ∆0,Γ,∆1 ⊢G C
ccut

are admissible.

Proof. The proof proceeds by induction on the height of derivations and the
complexity of cut formulae. Specifically, for scut, we first perform induction
on the left premise f , and if necessary, we perform subinduction on g or the
complexity of the cut formula A. For ccut, we start by performing induction
on the right premise g instead. The cases other than ⊸L and ⊸R have been
discussed in [30, Lemma 5], so we will only elaborate on the cases of ⊸.
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We first deal with scut. If f = ⊸L(f ′, f ′′), then we permute scut up, i.e.

f ′

− | Γ ⊢G A′
f ′′

B′ | ∆ ⊢G A

A′ ⊸ B′ | Γ,∆ ⊢G A
⊸L

g
A | Λ ⊢G C

A′ ⊸ B′ | Γ,∆,Λ ⊢G C
scut

7→ f ′

− | Γ ⊢G A′

f ′′

B′ | ∆ ⊢G A
g

A | Λ ⊢G C

B′ | ∆,Λ ⊢G C
scut

A′ ⊸ B′ | Γ,∆,Λ ⊢G C
⊸L

If f = ⊸R f ′, then we perform a subinduction on g:

– If g = ⊸L(g′, g′′), then

f ′

S | Γ, A ⊢G B

S | Γ ⊢G A ⊸ B
⊸R

g′

− | ∆ ⊢G A
g′′

B | Λ ⊢G C

A ⊸ B | ∆,Λ ⊢G C
⊸L

S | Γ,∆,Λ ⊢G C
scut

7→ g′

− | ∆ ⊢G A

f ′

S | Γ, A ⊢G B
g′′

B | Λ ⊢G C

S | Γ, A,Λ ⊢G C
scut

S | Γ,∆,Λ ⊢G C
ccut

where the complexity of the cut formulae is reduced.

– For other rules, we permute scut up. For example, if g = ⊸R g′, then

f ′

S | Γ, A ⊢G B

S | Γ ⊢G A ⊸ B
⊸R

g′

A ⊸ B | ∆, A′ ⊢G B′

A ⊸ B | ∆ ⊢G A′ ⊸ B′
⊸R

S | Γ,∆ ⊢G A′ ⊸ B′
scut

7→

f ′

S | Γ, A ⊢G B

S | Γ ⊢G A ⊸ B
⊸R

g′

A ⊸ B | ∆, A′ ⊢G B′

S | Γ,∆, A′ ⊢G B′
scut

S | Γ,∆ ⊢G A′ ⊸ B′
⊸R

For ccut, if g = ⊸R g′, then we permute ccut up. If g = ⊸L(g′, g′′), we permute
ccut up as well, but depending on where the cut formula is placed, we either
apply ccut on f and g′ or f and g′′.

Moreover, LSkG is sound and complete wrt. left skew monoidal closed cate-
gories [26, Theorem 3.2].

By soundness and completeness, similar to the result in [30] for skew monoidal
categories, we mean that LSkG is deductively equivalent to the axiomatic char-
acterization of the free left skew monoidal closed category.
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Definition 2.3. Derivations in the axiomatic calculus of left skew monoidal
closed category are generated by the following rules.

A ⊢L A
id

A ⊢L B B ⊢L C

A ⊢L C
comp

A ⊢L C B ⊢L D

A⊗B ⊢L C ⊗D
⊗

C ⊢L A B ⊢L D

A ⊸ B ⊢L C ⊸ D
⊸

I⊗A ⊢L A
λ

A ⊢L A⊗ I
ρ

(A⊗B)⊗ C ⊢L A⊗ (B ⊗ C)
α

A⊗B ⊢L C

A ⊢L B ⊸ C
π

In particular, this is a semi-unital and semi-associative variation of Moortgat
and Oehrle’s calculus [22, Chapter 4] of non-associative Lambek calculus (NL),
where only right residuation is present. We only care about sequent derivability
in this section, therefore we omit the congruence relations on sets of derivations
A ⊢L B and S | Γ ⊢G A that identify certain pairs of derivations. However, the
congruence relations are essential for these calculi being correct characterizations
of the free left skew monoidal closed category.

The calculus LSkG, being an equivalent presentation of a skew version of NL,
provides an effective procedure to determine formulae derivability in LSkNL. In
other words, for any formula A, ⊢L A if and only if − | ⊢G A. Exhaustive
proof search in LSkG always terminates, so for any A, either it finds a proof or
it fails and there is no proof

Adapted from [22], we define trees inductively by the grammar T ::= Fma |
− | (T, T ), where − is an empty tree. A context is a tree with a hole defined
recursively as C ::= [·] | (C, T ) | (T, C). The substitution of a tree into a hole is
defined recursively:

subst([·], U) = U
subst((T ′, C), U) = (T ′, subst(C, U))
subst((C, T ′), U) = (subst(C, U), T ′)

We use T [·] to denote a context and T [U ] to abbreviate subst(T [·], U). Some-
times we omit parentheses for trees when it does not cause ambiguity. Sequents
in LSkT are in the form T ⊢T A where T is a tree and A is a single formula.

Definition 2.4. Derivations in LSkT are generated recursively by following
rules:

A ⊢T A
ax

T [−] ⊢T C

T [I] ⊢T C
IL − ⊢T I

IR
T [A,B] ⊢T C

T [A⊗B] ⊢T C
⊗L T ⊢T A U ⊢T B

T,U ⊢T A⊗B
⊗R

U ⊢T A T [B] ⊢T C

T [A ⊸ B,U ] ⊢T C
⊸L

T,A ⊢T B

T ⊢T A ⊸ B
⊸R

T [U0, (U1, U2)] ⊢T C

T [(U0, U1), U2] ⊢T C
assoc

T [U ] ⊢T C

T [−, U ] ⊢T C
unitL

T [U,−] ⊢T C

T [U ] ⊢T C
unitR

This calculus is similar to the ones for NL [22] and NL with unit [9] but with
semi-associative (assoc) and semi-unital (unitL and unitR) rules. The structural
rule unitL, read bottom-up, removes an empty tree from the left. It helps us to

6



correctly characterize the axiom λ in LSkT, i.e. I ⊗ A ⊢T A is derivable while
A ⊢T I⊗A is not. Analogously for the rule unitR, from a bottom-up perspective,
adds an empty tree from the right, and we cannot capture ρ in LSkT without
unitR (a double question mark ?? means that no rule can be applied to close the
derivation):

A ⊢T A
ax

−, A ⊢T A
unitL

I, A ⊢T A
IL

I⊗A ⊢T A
⊗L

??
X ⊢T I

??
− ⊢T X

X,− ⊢T I⊗X
⊗R

X ⊢T I⊗X
unitR

A ⊢T A
ax − ⊢T I

IR

A,− ⊢T A⊗ I
⊗R

A ⊢T A⊗ I
unitR

??
X,− ⊢T X

X, I ⊢T X
IL

X ⊗ I ⊢T X
⊗L

Theorem 2.5. LSkT is cut-free, i.e. the rule

f
U ⊢T A

g
T [A] ⊢T C

T [U ] ⊢T C
cut

is admissible.

Proof. We perform induction on the structure of derivation f of the left premise,
and if necessary, we perform subinduction on the derivation g or the complexity
of the cut formula A. Cases of logical rules ax,⊗L,⊗R,⊸L, and ⊸R have been
discussed in [22], so we only elaborate on the new cases arising in LSkT.

• The first new case is that f = IR, then we inspect the structure of g.

– If g = ax : I ⊢T I, then we define cut(IR, ax) = IR.
– If g = IL g′, then there are two subcases:

∗ if the I introduced by IL is the cut formula, then we define

− ⊢T I
IR

g′

T [−] ⊢T C

T [I] ⊢T C
IL

T [−] ⊢T C
cut

7→ g′

T [−] ⊢T C

∗ if the I introduced by IL is not the cut formula, then we define

− ⊢T I
IR

g′

T [−] ⊢T C

T [I] ⊢T C
IL

T {I:=−}[I] ⊢T C
cut

7→
− ⊢T I

ax g′

T [−] ⊢T C

T {I:=−}[−] ⊢T C
cut

T {I:=−}[I] ⊢T C
IL

where T {I:=−}[·] means that a formula occurrence I at some fixed
position in the context has been replaced by −.
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– If g = R g′, where R is a one-premise rule other than IL, then
cut(IR,R g′) = R(cut(IR, g′)).

– The cases of an arbitrary two-premises rule are similar.

• The only other new cases are IL and the structural rules, which are all
one-premise left rules, where we can permute cut upwards. For example,
if f = unitL f ′, then we define

f ′

T ′[U ] ⊢T A

T ′[−, U ] ⊢T A
unitL

g
T [A] ⊢T C

T [T ′[−, U ]] ⊢T C
cut

7→

f ′

T ′[U ] ⊢T A
g

T [A] ⊢T
T [T ′[U ]] ⊢T C

cut

T [T ′[−, U ]] ⊢T C
unitL

The other cases are similar.

The proof of equivalence relies on the following lemmata and definitions.

Definition 2.6. For any tree T , T ∗ is the formula obtained from T by replacing
commas with ⊗ and − with I, respectively.

Lemma 2.7. For any context T [·] and tree U , T [U ]∗ = T [U∗]∗.

Proof. The proof proceeds by induction on the structure of T [·].
If T [·] = [·], then [U ]∗ = U∗ by the definition of substitution.
If T [·] = (T ′[·], T ′′), then by inductive hypothesis, we have T ′[U ]∗ = T ′[U∗]∗

and by definition, we have (T ′[U ], T ′′)∗ = T ′[U ]∗ ⊗L T ′′∗ = T ′[U∗]∗ ⊗L T ′′∗ =
(T ′[U∗], T ′′)∗.
The case T [·] = (T ′, T ′′[·]) is symmetric.

Lemma 2.8. Given a context T [·] and a derivation f : A ⊢L B, the following
rule is admissible:

f
A ⊢L B

T [A]∗ ⊢L T [B]∗
T [f ]∗

Proof. The proof proceeds by induction on the structure of T [·].
If T [·] = [·], then we have T [A]∗ = A and T [B]∗ = B, and f is the desired
derivation.
If T [·] = (T ′[·];T ′′), then we construct the desired derivation as follows:

f
A ⊢L B

T ′[A]∗ ⊢L T ′[B]∗
T ′[f ]∗

T ′′∗ ⊢L T ′′∗
id

T ′[A]∗ ⊗ T ′′∗ ⊢L T ′[B]∗ ⊗ T ′′∗
⊗

(T ′[A], T ′′)∗ ⊢L (T ′[B], T ′′)∗
Lemma 2.7

The case T [·] = (T ′, T ′′[·]) is symmetric.
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Definition 2.9. We define an encoding function J− | −K that transforms a tree
and an ordered list of formulae into a tree associating to the left:

JT | [ ]K = T

JT | B,ΓK = J(T,B) | ΓK

Lemma 2.10. For any stoup S and contexts Γ and ∆, JJS | ΓK | ∆K = JS |
Γ,∆K.

Proof. The proof prceeds by induction on ∆.
If ∆ = [ ], then JJS | ΓK | [ ]K = JS | ΓK = JS | Γ, [ ]K by definition.
If ∆ = (A,∆′), then by Definition 2.9, inductive hypothesis, and associativity
of lists, we have JJS | ΓK | A,∆′K = JJS | Γ, AK | ∆′K I.H.

= JS | (Γ, A),∆′K = JS |
Γ, (A,∆′)K.

With the above lemmata, definition, and the functions s(S) that maps a
stoup to a tree (i.e. s(S) = − if S = − or s(S) = B if S = B), we can state and
prove the equivalence between LSkG and LSkT.

Theorem 2.11. The calculi LSkG and LSkT are equivalent, meaning that the
two statements below are true:

• For any derivation f : S | Γ ⊢G C, there exists a derivation G2Tf : Js(S) |
ΓK ⊢T C.

• For any derivation f : T ⊢T C, there exists a derivation T2Gf : T ∗ | ⊢G
C.

Proof. Both G2T and T2G are constructed by induction on height of f .
For G2T, the interesting cases are ⊗R and ⊸L. For example, if f =

⊗R(f ′, f ′′), then by inductive hypothesis, we have two derivations G2T f ′ :
Js(S) | ΓK ⊢T A and G2T f ′′ : JI | ∆K ⊢T B. Our goal sequent is JJs(S) | ΓK |
∆K ⊢T A⊗B, which is constructed as follows:

G2T f ′

Js(S) | ΓK ⊢T A
G2T f ′′

J− | ∆K ⊢T B

Js(S) | ΓK, J− | ∆K ⊢T A⊗B
⊗R

JJs(S) | ΓK,− | ∆K ⊢T A⊗B
assoc∗

JJs(S) | ΓK | ∆K ⊢T A⊗B
unitR

Js(S) | Γ,∆K ⊢T A⊗B
Lemma 2.10

where assoc∗ means multiple applications of assoc. The case of ⊸L is similar.
For T2G, the construction relies on Lemma 2.8 heavily. For example, when

f = unitR g, where we have g : T [U,−] ⊢T C. By inductive hypothesis, we
have T2G g : T [U∗ ⊗ I]∗ | ⊢G C. With Lemma 2.8, we construct the desired
derivation as follows:

U∗ | ⊢G U∗
ax
− | ⊢G I

IR

U∗ | ⊢G U∗ ⊗ I
⊗R

T [U∗]∗ | ⊢G T [U∗ ⊗ I]∗
Lemma 2.8

T [U ]∗ | ⊢G T [U,−]∗ Lemma 2.7
T2G g

T [U,−]∗ | ⊢G C

T [U ]∗ | ⊢G C
scut

The other cases are similar.
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3 Skew Categories
In this section, we present the definitions of left (right) skew monoidal closed
categories, skew monoidal bi-closed categories, and various terms that will be
used in the following section for discussion.

Definition 3.1. A left skew monoidal closed category C is a category with a
unit object I and two functors ⊗ : C×C→ C and ⊸: Cop ×C→ C forming an
adjunction −⊗B ⊣ B ⊸ − for all B, and three natural transformations λ, ρ, α
typed λA : I⊗A→ A, ρA : A→ A⊗ I and αA,B,C : (A⊗B)⊗C → A⊗ (B⊗C),
satisfying coherence conditions on morphisms due to Mac Lane [19]:

I⊗ I

I I

ρI λI

(A⊗ I)⊗B A⊗ (I⊗B)

A⊗B A⊗B

ρA⊗B A⊗λB

αA,I,B

(I⊗A)⊗B I⊗ (A⊗B)

A⊗B

αI,A,B

λA⊗BλA⊗B

(A⊗B)⊗ I A⊗ (B ⊗ I)

A⊗B

αA,B,I

A⊗ρB
ρA⊗B

(A⊗ (B ⊗ C))⊗D A⊗ ((B ⊗ C)⊗D)

((A⊗B)⊗ C)⊗D (A⊗B)⊗ (C ⊗D) A⊗ (B ⊗ (C ⊗D))

αA,B⊗C,D

A⊗αB,C,D

αA,B,C⊗DαA⊗B,C,D

αA,B,C⊗D

Left skew monoidal closed category has other equivalent characterizations
[24, 27], because natural transformations (λ, ρ, α) are in bijective correspondence
with tuples of (extra)natural transformations (j, i, L) typed jA : I → A ⊸ A,
iA : I ⊸ A→ A, and LA,B,C : B ⊸ C → (A ⊸ B) ⊸ (A ⊸ C). In particular,
in a left skew non-monoidal closed category, (λ, ρ, α) are not available and one
has to work with (j, i, L) and corresponding equations.

Definition 3.2. A right skew monoidal closed category (C, I,⊗,⊸) is defined
with the same objects and adjoint functors as a in left skew monoidal closed
category but three natural transformations λR, ρR, αR are typed λR

A : A→ I⊗A,
ρRA : A ⊗ I → A and αR

A,B,C : A ⊗ (B ⊗ C) → (A ⊗ B) ⊗ C. The equations on
morphisms are analogous but modified to fit the definition.

Similar to left skew monoidal closed categories, natural transformations
(λR, ρR, αR) are in bijective correspondence with tuples (jR, iR, LR) typed jRA,B :

C(I, A ⊸ B) → C(A,B), iRA : A → I ⊸ A, and LR
A,B,C,D : C(A,B ⊸ (C ⊸

D))→
∫X C(A,X ⊸ D)×C(B,C ⊸ X), where

∫X is a coend, cf. [27, Section
4], and C(A,B) means the set of morphisms from A to B. In parts of the next
sections, where we only work with thin categories (for any two objects A and
B, C(A,B) is either empty or a singleton set), it is safe to replace

∫X with an
existential quantifier.
In the rest of the paper, we usually omit subscripts of natural transformations.
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Definition 3.3. A left skew monoidal closed category is

– associative normal if α is a natural isomorphism;

– left unital normal if λ is a natural isomorphism;

– right unital normal if ρ is a natural isomorphism.

– Fully normal if α, λ, and ρ are all natural isomorphisms.

Each normality condition can be expressed equivalently using j, i, and L. The
normality conditions for right skew monoidal closed categories follow the same
pattern, but with αR, λR, and ρR instead of α, λ, and ρ.

Definition 3.4. A category (C, I,⊗L,⊸L,⊗R,⊸R) is skew monoidal bi-closed
(SkMBiC) if there exists a natural isomorphism γ : A⊗LB → B⊗RA, (C, I,⊗L,⊸L

) is left skew monoidal closed such that right skew structural rules are dictated by
the left skew ones via γ, i.e. λR = γ◦ρ, ρR = γ−1◦λ, and αR = γ◦γ◦α◦γ−1◦γ−1
diagrammatically:

A I⊗R A

A A⊗L I

λR

ρ

γ

A⊗R I A

I⊗L A A

ρR

γ−1

λ

A⊗R (B ⊗R C) (A⊗R B)⊗R C

A⊗R (C ⊗L B) (B ⊗L A)⊗R C

(C ⊗L B)⊗L A C ⊗L (B ⊗L A)

αR

γ−1

γ−1

γ

α

γ

This definition combines concepts from skew bi-monoidal and bi-closed categories
as introduced in [27].

In contrast to the categorical model of associative Lambek calculus, the
monoidal bi-closed category, we do not have both left (⧹) and right residuation
(⧸), but instead have two right residuations corresponding to different tensor
products. However, with the natural isomorphism γ, and selecting a specific
tensor, we can simulate both left and right residuations.

In the remainder of the paper, we will develop axiomatic and sequent calculi
for SkMBiC and explore its relational semantics.

4 Calculi for SkMBiC

By defining new formulae and adding rules in LSkNL, we can have an axiomatic
calculus SkMBiCA, where formulae (Fma) are inductively generated by the gram-
mar A,B ::= X | I | A⊗L B | A ⊸L B | A⊗R B | A ⊸R B. X and I adhere to

11



(category laws) id ◦ f .
= f f

.
= f ◦ id (f ◦ g) ◦ h .

= f ◦ (g ◦ h)

(⊗L functorial) id⊗L id
.
= id (h ◦ f)⊗L (k ◦ g) .

= h⊗L k ◦ f ⊗L g

(⊸L functorial) id ⊸L id
.
= id (f ◦ h) ⊸L (k ◦ g) .

= h ⊸L k ◦ f ⊸L g

(⊸R functorial) id ⊸R id
.
= id (f ◦ h) ⊸R (k ◦ g) .

= h ⊸R k ◦ f ⊸R g

λ ◦ id⊗L f
.
= f ◦ λ

(λ, ρ, α nat. trans.) ρ ◦ f .
= f ⊗L id ◦ ρ

α ◦ (f ⊗L g)⊗L h
.
= f ⊗L (g ⊗L h) ◦ α

λ ◦ ρ .
= id id

.
= id⊗L λ ◦ α ◦ ρ⊗L id

(Mac Lane axioms) λ ◦ α .
= λ⊗L id α ◦ ρ .

= id⊗L ρ

α ◦ α .
= id⊗L α ◦ α ◦ α⊗L id

(γ isomorphism) γ ◦ γ−1 .
= id γ−1 ◦ γ .

= id

πf ◦ g .
= π(f ◦ (g ⊗L id)) π(f ◦ g) .

= (id ⊸L f) ◦ πg
(π(R) nat. trans.) π(id⊗L f)

.
= (f ⊸L id) ◦ πid πR(id⊗R f)

.
= (f ⊸R id) ◦ πRid

πRf ◦ g .
= πR(f ◦ (g ⊗R id)) πR(f ◦ g) .

= (id ⊸R f) ◦ πRg

π(π−1f)
.
= f π−1(πf)

.
= f

(π(R) isomorphism)

πR(πR−1f)
.
= f πR−1(πRf)

.
= f

Figure 1: Congruence relation on morphisms in FSkMBiC(At).

the definitions provided in Section 2, and ⊗L and ⊸L (⊗R and ⊸R) represent
left (right) skew multiplicative conjunction and implication, respectively.
Derivations in SkMBiCA are inductively generated by the following rules:

A ⊢L A
id

A ⊢L B B ⊢L C

A ⊢L C
comp

A ⊢L C B ⊢L D

A⊗L B ⊢L C ⊗L D
⊗L

C ⊢L A B ⊢L D

A ⊸L B ⊢L C ⊸L D
⊸L

C ⊢L A B ⊢L D

A ⊸R B ⊢L C ⊸R D
⊸R

I⊗L A ⊢L A
λ

A ⊢L A⊗L I
ρ

(A⊗L B)⊗L C ⊢L A⊗L (B ⊗L C)
α

A⊗L B ⊢L B ⊗R A
γ

A⊗R B ⊢L B ⊗L A
γ−1

A⊗L B ⊢L C

A ⊢L B ⊸L C
π

A⊗R B ⊢L C

A ⊢L B ⊸R C
πR

For any f : A ⊢L B and g : C ⊢L D, we define f ⊗R g as γ ◦ (g ⊗L f) ◦ γ−1. λR,
ρR, and αR are also derivable.
Similar to the constructions in [30, 29, 28, 31, 26], SkMBiCA generates the free
SkMBiC (FSkMBiC(At)) over a set At in the following way:

– Objects of FSkMBiC(At) are formulae (Fma).

– Morphisms between formulae A and B are derivations of sequents A ⊢L B
and identified up to the congruence relation .

= in Figure 1: Notice that
by the definition of f ⊗R g and γ being an isomorphism, γ and γ−1 are
natural transformations. For example, γ ◦ f ⊗L g

.
= γ ◦ f ⊗L g ◦ id .

=
γ ◦ f ⊗L g ◦ γ−1 ◦ γ = g ⊗R f ◦ γ. Similarly, naturality of (λR, ρR, αR) and
the Mac Lane axioms corresponding to them hold as well.
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Given a skew monoidal bi-closed category D with function G : At → D, we
can define functions G0 : Fma → D0 (D0 is the collection of objects in D)
and G1 : FSkMBiC(At)(A,B) → D(G0(A), G0(B)) by induction on complexity
of formulae and height of derivations respectively. This construction uniquely
specifies a strict skew monoidal bi-closed functor G : FSkMBiC(At) → D satis-
fying G(X) = G(X).

However, it remains unclear how to construct a sequent calculus à la Gi-
rard for SkMBiC. A simpler scenario to consider is the sequent calculus for
right skew monoidal closed categories. In this context, recalling Definition 3.2,
where natural transformations are in an opposite direction compared to left
skew monoidal closed categories. One approach is to propose a dual sequent
calculus to LSkG. Here, sequents would be of the form Γ | S ⊢G A, indicating a
reversal of stoup and context, with all left rules applicable solely to the stoup.
We should think of the antecedents as trees associating to the right, structured
as (An, (. . . , (A1, A0)) . . . ). Nevertheless, ⊸R, by definition, is again a right
residuation, implying that ⊸RL and ⊸RR should resemble those in LSkG. This
requirement then necessitates contexts to appear on the right-hand side of the
stoup.

Fortunately, we can develop a sequent calculus, denoted as SkMBiCT, which
is inspired by LSkT to characterize SkMBiC categories. Specifically, SkMBiCT is
an instantiation of Moortgat’s multimodal Lambek calculus [20] with unit, semi-
unital, and semi-associative structural rules.

Trees in SkMBiCT are inductively defined by the grammar T ::= Fma | − |
(T, T ) | (T ;T ). What we have defined are trees with two different ways of
linking nodes: through the use of commas and semicolons, corresponding to
⊗L and ⊗R, respectively. Contexts and substitution are defined analogously to
those of LSkT. Sequents are in the form T ⊢T A analogous to those in Section
2.
Derivations in SkMBiCT are generated recursively by the following rules:

A ⊢T A
ax − ⊢T I

IR
T [−] ⊢T C

T [I] ⊢T C
IL

T [A,B] ⊢T C

T [A⊗L B] ⊢T C
⊗LL

T ⊢T A U ⊢T B

T,U ⊢T A⊗L B
⊗LR

U ⊢T A T [B] ⊢T C

T [A ⊸L B,U ] ⊢T C
⊸LL

T,A ⊢T B

T ⊢T A ⊸L B
⊸LR

T [U0, (U1, U2)] ⊢T C

T [(U0, U1), U2] ⊢T C
assocL

T [U ] ⊢T C

T [−, U ] ⊢T C
unitLL

T [U,−] ⊢T C

T [U ] ⊢T C
unitRL

13



T [U0, U1] ⊢T C

T [U1;U0] ⊢T C
⊗comm

T [A;B] ⊢T C

T [A⊗R B] ⊢T C
⊗RL

T ⊢T A U ⊢T B

T ;U ⊢T A⊗R B
⊗RR

U ⊢T A T [B] ⊢T C

T [A ⊸R B;U ] ⊢T C
⊸RL

T ;A ⊢T B

T ⊢T A ⊸R B
⊸RR

T [(U0;U1);U2] ⊢T C

T [U0; (U1;U2)] ⊢T C
assocR

T [U ] ⊢T C

T [U ;−] ⊢T C
unitLR

T [−;U ] ⊢T C

T [U ] ⊢T C
unitRR

We can think of these rules as originating from two separate calculi: LSkT

(the red part with ax, IR, and IL) and another for right skew monoidal closed
categories (RSkT, the blue part with ax, IR, and IL), linked by ⊗comm, in other
words, we can mimic all the blue rules in the style of LSkT (only commas appear
in antecedents) and conversely, the red rules can be expressed using the blue
rules. For example, we can express ⊗RL, ⊗RR and ⊸RL in the style of LSkT:

T [A,B] ⊢T C

T [B ⊗R A] ⊢T C
⊗RL′ =

T [A,B] ⊢T C

T [B;A] ⊢T C
⊗comm

T [B ⊗R A] ⊢T C
⊗RL

T ⊢T A U ⊢T B

U, T ⊢T A⊗R B
⊗RR′ =

T ⊢T A U ⊢T B

T ;U ⊢T A⊗R B
⊗RL

U, T ⊢T A⊗R B
⊗comm

U ⊢T A T [B] ⊢T C

T [U,A ⊸R B] ⊢T C
⊸RL′ =

U ⊢T A T [B] ⊢T C

T [A ⊸R B;U ] ⊢T C
⊸RL

T [U,A ⊸R B] ⊢T C
⊗comm

A, T ⊢T B

T ⊢T A ⊸R B
⊸RR′ =

A, T ⊢T B

T ;A ⊢T B
⊗comm

T ⊢T A ⊸R B
⊸RR

Theorem 4.1. Similar to LSkT, cut is admissible in SkMBiCT.

U ⊢T A T [A] ⊢T C

T [U ] ⊢T C
cut

Proof. The proof proceeds similarly to that of Theorem 2.5. For the new logical
rules in blue, the proofs follow the same pattern as their red counterparts. Since
⊗comm and all the logical and structural rules in blue are one-premise left rules,
we can permute cut upwards.

The equivalence between SkMBiCA and SkMBiCT can be proved by induc-
tion on height of derivations with the following admissible rules, definition, and
lemmata:

Definition 4.2. For any tree T , T# is the formula obtained from T by replacing
commas with ⊗L and semicolons with ⊗R, and − with I, respectively.

Lemma 4.3. For any context T [·] and tree U , T [U ]# = T [U#]#.
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Proof. The proof proceeds by induction on the structure of T [·].
If T [·] = [·], then [U ]# = U# by the definition of substitution.
If T [·] = (T ′[·], T ′′), then by inductive hypothesis, we have T ′[U ]# = T ′[U#]#

and by the definition of ()#, we have (T ′[U ], T ′′)# = T ′[U ]# ⊗L T ′′# = T ′[U#]#⊗L

T ′′# = (T ′[U#], T ′′)#.
Other cases are similar.

Lemma 4.4. Given a context T [·] and a derivation f : A ⊢L B, the following
rule is admissible:

f
A ⊢L B

T [A]# ⊢L T [B]#
T [f ]#

Proof. The proof proceeds by induction on the structure of T [·].
If T [·] = [·], then we have T [A]# = A and T [B]# = B, and f is the desired
derivation.
If T [·] = (T ′[·];T ′′), then we construct the desired derivation as follows:

f
T ′[A]# ⊢L T ′[B]# T ′′# ⊢L T ′′#

id

T ′[A]# ⊗R T ′′# ⊢L T ′[B]# ⊗R T ′′#
⊗R

(T ′[A];T ′′)# ⊢L (T ′[B];T ′′)#
Lemma 4.3

The case T [·] = (T ′;T ′′[·]) is symmetric, while other cases are covered in the
proof of Lemma 2.8.

Theorem 4.5. SkMBiCT is equivalent to SkMBiCA, meaning that the following
two statements are true:

1. For any derivation f : A ⊢L C, there exists a derivation A2Tf : A ⊢T C.

2. For any derivation f : T ⊢T C, there exists a derivation T2Af : T# ⊢L C.

Proof. We first construct A2T by structural induction on the derivation f .
Case f = id.

A ⊢L A
id 7→ A ⊢T A

ax

Case f = comp(f ′, f ′′).

f ′

A ⊢L B
f ′′

B ⊢L C

A ⊢L C
comp 7→

A2Tf ′

A ⊢T B
A2Tf ′′

B ⊢T C

A ⊢T C
cut

Case f = ⊗L(f ′, f ′′).

f ′

A ⊢L C
f ′′

B ⊢L D

A⊗L B ⊢L C ⊗L D
⊗L 7→

A2Tf ′

A ⊢T C
A2Tf ′′

B ⊢T D

A,B ⊢T C ⊗L D
⊗LR

A⊗L B ⊢T C ⊗L D
⊗LL
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Case f =⊸L (f ′, f ′′).

f ′

C ⊢L A
f ′′

B ⊢L D

A ⊸L B ⊢L C ⊸L D
⊸L 7→

A2Tf ′

C ⊢T A
A2Tf ′′

B ⊢T D

A ⊸L B,C ⊢T D
⊸LL

A ⊸L B ⊢T C ⊸L D
⊸LR

Case f = λ.

I⊗L A ⊢L A
λ 7→

A ⊢T A
ax

−, A ⊢T A unitLL

I, A ⊢T A
IL

I⊗L A ⊢T A
⊗LL

Case f = ρ.

A ⊢L A⊗L I
ρ 7→

A ⊢T A
ax − ⊢T I

IR

A,− ⊢T A⊗L I
⊗RR

A ⊢T A⊗L I
unitRL

Case f = α.

(A⊗L B)⊗L C ⊢L A⊗L (B ⊗L C)
α

7→

A ⊢T A
ax

B ⊢T B
ax

C ⊢T C
ax

B,C ⊢T B ⊗L C
⊗LR

A, (B,C) ⊢T A⊗L (B ⊗L C)
⊗LR

(A,B), C ⊢T A⊗L (B ⊗L C)
assocL

(A⊗L B), C ⊢T A⊗L (B ⊗L C)
⊗LL

(A⊗L B)⊗L C ⊢T A⊗L (B ⊗L C)
⊗LL

Case f = γ.

A⊗L B ⊢L B ⊗R A
γ 7→

B ⊢T B
ax

A ⊢T A
ax

B;A ⊢T B ⊗R A
⊗RR

A,B ⊢T B ⊗R A
⊗comm

A⊗L B ⊢T B ⊗R A
⊗LL

Case f = γ−1.

A⊗R B ⊢L B ⊗L A
γ−1 7→

B ⊢T B
ax

A ⊢T A
ax

B,A ⊢T B ⊗L A
⊗LR

A;B ⊢T B ⊗L A
⊗comm−1

A⊗R B ⊢T B ⊗L A
⊗RL
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Case f = π f ′.

f ′

A⊗L B ⊢L C

A ⊢L B ⊸L C
π 7→

A2Tf ′

A⊗L B ⊢T C

A,B ⊢T C
⊗LL−1

A ⊢T B ⊸L C
⊸LR

Case f = π−1 f ′.

f ′

A ⊢L B ⊸L C

A⊗L B ⊢L C
π−1

7→

A2Tf ′

A ⊢T B ⊸L C

A,B ⊢T C ⊸LR−1

A⊗L B ⊢T C
⊗LL

Other cases for ⊸R and πR are similar.
We construct T2A by structural induction on f as well.
Case f = ax.

A ⊢T A
ax 7→ A ⊢L A

id

Case f = IR.

− ⊢T I
IR 7→ I ⊢L I

id

Case f = IL f ′.
f ′

T [−] ⊢T C

T [I] ⊢T C
IL
7→

T2Af ′

T [−]# ⊢L C

T [I]# ⊢L C

Case f = ⊗comm f ′

f ′

T [U0, U1] ⊢T C

T [U1;U0] ⊢T C
⊗comm

7→

U#
1 ⊗R U#

0 ⊢L U#
0 ⊗L U#

1

γ−1

T [U#
1 ⊗R U#

0 ]# ⊢L T [U#
0 ⊗L U#

1 ]#
Lemma 4.4

T [U1;U0]
# ⊢L T [U0, U1]

# Lemma 4.3 T2Af ′

T [U0, U1]
# ⊢L C

T [U1;U0]
# ⊢L C

comp

Case f = ⊗L f ′

f ′

T [A,B] ⊢T C

T [A⊗L B] ⊢T C
⊗LL

7→
T2Af ′

T [A,B]# ⊢L C

T [A⊗L B]# ⊢L C
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Case f = ⊗LR(f ′, f ′′).

f ′

T ⊢T A
f ′′

U ⊢T B

T,U ⊢T A⊗L B
⊗LR

7→

T2Af ′

T# ⊢L A
T2Af ′′

U# ⊢L B

T# ⊗L U# ⊢L A⊗L B
⊗L

(T,U)# ⊢L A⊗L B
Lemma 4.3

Case f = ⊸LL.

f ′

U ⊢T A
f ′′

T [B] ⊢T C

T [A ⊸L B,U ] ⊢T C
⊸LL

7→

A ⊸L B ⊢L A ⊸L B
id

T2Af ′

U# ⊢L A

(A ⊸L B)⊗L U# ⊢L (A ⊸L B)⊗L A
⊗L

T [(A ⊸L B)⊗L U#]# ⊢L T [(A ⊸L B)⊗L A]#
Lemma 4.4

A ⊸L B ⊢L A ⊸L B
id

(A ⊸L B)⊗L A ⊢L B
π−1

T [(A ⊸L B)⊗L A]# ⊢L T [B]#
Lemma 4.4

T [(A ⊸L B)⊗L U#]# ⊢L T [B]#
comp

T [(A ⊸L B), U ]# ⊢L T [B]#
Lemma 4.3

T2Af ′′

T [B]# ⊢L C

T [(A ⊸L B), U#]# ⊢L C
comp

Case f = ⊸LR f ′

f ′

T,A ⊢T B

T ⊢T A ⊸L B
⊸LR

7→
T2Af ′

T# ⊗L A ⊢L B

T# ⊢L A ⊸L B
π

Case f = assocL f ′

f ′

T [U0, (U1, U2)] ⊢T C

T [(U0, U1), U2] ⊢T C
assocL

7→
(U#

0 ⊗L U#
1 )⊗L U#

2 ⊢L U#
0 ⊗L (U#

1 ⊗L U#
2 )

α

T [(U#
0 ⊗L U#

1 )⊗L U#
2 ]# ⊢L T [U#

0 ⊗L (U#
1 ⊗L U#

2 )]#
Lemma 4.4

T [(U0, U1), U2]
# ⊢L T [U0, (U1, U2)]

# Lemma 4.3
T2Af ′

T [U0, (U1, U2)]
# ⊢L C

T [(U0, U1), U2]
# ⊢T C

comp

Case f = unitLL f ′

f ′

T [U ] ⊢T C

T [−, U ] ⊢T C
unitLL

7→

I⊗L U# ⊢L U# λ

T [I⊗L U#]# ⊢L T [U#]#
Lemma 4.4

T [−, U ]# ⊢L T [U ]#
Lemma 4.3

T2Af ′

T [U ]# ⊢T C

T [−, U ]# ⊢L C
comp
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Case f = unitRL f ′

f ′

T [U,−] ⊢T C

T [U ] ⊢T C
unitRL

7→

U# ⊢L U# ⊗L I
ρ

T [U#]# ⊢L T [U# ⊗L I]#
Lemma 4.4

T [U ]# ⊢L T [U,−]#
Lemma 4.3

T2Af ′

T [U,−]# ⊢T C

T [U ]# ⊢L C
comp

Other cases for right skew rules are similar.

5 Relational Semantics of SkMBiCA and Applica-
tion

In this section, we present the relational semantics of SkMBiCA. Furthermore,
the relational semantics for SkMBiCA is characterized modularly, allowing us to
construct models for semi-substructural logics step by step by incorporating
additional structural conditions into the frame. The modularity allows us to
provide an algebraic proof for the main theorems concerning the interdefinability
of a series of skew categories as discussed in [27].

A preordered ternary frame with a special subset is ⟨W,≤, I,L⟩, where W is
a set, ≤ is a preorder relation on W , I is a downwards closed subset of W , and
L is an arbitrary ternary relation on W , where L is upwards closed in the first
two arguments and downwards closed in the last argument with respect to ≤.
For example, given Labc, if we have a ≤ a′, b ≤ b′, and c′ ≤ c, then La′b′c′.

Definition 5.1. We list properties of ternary relations which we will focus on.

Left Skew Associativity (LSA) ∀a, b, c, d, x ∈W,Labx & Lxcd
−→ ∃y ∈W such that Lbcy & Layd.

Left Skew Left Unitality (LSLU) ∀a, b ∈W, e ∈ I,Leab −→ b ≤ a.

Left Skew Right Unitality (LSRU) ∀a ∈W, ∃e ∈ I such that Laea.

Right Skew Associativity (RSA) ∀a, b, c, d, x ∈W,Lbcx & Laxd
−→ ∃y ∈W such that Laby & Lycd.

Right Skew Left Unitality (RSLU) ∀a ∈W, ∃e ∈ I such that Leaa.

Right Skew Right Unitality (RSRU) ∀a, b ∈W, e ∈ I,Laeb −→ b ≤ a.

Given another ternary relation R, we define

LR-reverse ∀a, b, c ∈W,Labc←→ Rbac.

The associativity and unitality conditions are adapted from the theory of rela-
tional monoids [23] and relational semantics for Lambek calculus [12].
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A SkMBiCA frame is a quintuple ⟨W,≤, I,L,R⟩, where LR-reverse is satisfied,
L satisfies LSA, LSLU, LSRU, and R automatically satisfies RSA, RSLU, RSRU
because of LR-reverse.

Unlike studies in NL e.g. [12, 20, 22], where two associativity conditions
simultaneously hold for a relation or not, we explore two relations where one
satisfies LSA and the other satisfies RSA. Another distinction from the existing
studies on semantics for NL with unit [9] (or non-commutative linear logic [1]) is
that while W is commonly assumed to be an unital groupoid (or monoid in the
case of linear logic), here, we should consider that the unit behaves differently
for different relations.

We denote the set of downwards closed subsets of W as P↓(W ).

Definition 5.2. A function v : Fma→ P↓(W ) on a SkMBiCA frame is a valua-
tion if it satisfies:

v(I) = I
v(A⊗L B) = {c : ∃a ∈ v(A), b ∈ v(B), Labc}
v(A ⊸L B) = {c : ∀a ∈ v(A), b ∈ W, Lcab ⇒ b ∈ v(B)}
v(A⊗R B) = {c : ∃a ∈ v(A), b ∈ v(B), Rabc}
v(A ⊸R B) = {c : ∀a ∈ v(A), b ∈ W, Rcab ⇒ b ∈ v(B)}

We define a SkMBiCA model to be a SkMBiCA frame with a valuation function,
i.e. ⟨W,≤, I,L,R, v⟩. A sequent A ⊢L B is valid in a model ⟨W,≤, I,L,R, v⟩ if
v(A) ⊆ v(B) and is valid in a frame if for any v for that frame, v(A) ⊆ v(B).

Theorem 5.3 (Soundness). If a sequent A ⊢L B is provable in SkMBiCA then
it is valid in any SkMBiCA model.

Proof. The proof is adapted from [12, 22], where the cases of α and αR have
been discussed. Therefore, we only elaborate on new cases arising in SkMBiCA.

– If the derivation is the axiom λ : I⊗LA ⊢L A, then for any SkMBiCA model
⟨W, I,L,R, v⟩ and any a ∈ v(I ⊗L A), there exist e ∈ I, a′ ∈ v(A), and
Lea′a. By LSLU, we know that a ≤ a′, and then a ∈ v(A).

– If the derivation is the axiom ρ : A ⊢L A⊗L I, then for any SkMBiCA model
⟨W, I,L,R, v⟩ and any a ∈ v(A), by LSRU, there exists e ∈ I such that
Laea, which means that a ∈ v(A⊗L I).

– If the derivation is the axiom γ : A ⊗L B ⊢L B ⊗R A, then for any
SkMBiCA model ⟨W, I,L,R, v⟩ and any c ∈ v(A⊗LB), there exist a ∈ v(A)
and b ∈ v(B) such that Labc. By LR-reverse, we have Rbac, therefore
c ∈ v(B ⊗R A).

– The case of γ−1 is similar.

Definition 5.4. The canonical model of SkMBiCAe is ⟨W,≤, I,L,R, v⟩ where

– W = Fma and A ≤ B if and only if A ⊢L B,

– I = v(I),

– LABC if and only if C ⊢L A⊗L B,
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– RABC if and only if C ⊢L A⊗R B, and

– v(A) = {B | B ⊢L A is provable in SkMBiCA}.

Lemma 5.5. The canonical model is a SkMBiCA model.

Proof.

– The set (Fma,⊢L) is a preorder because of the rules id and comp, and the
set I is downwards closed because of comp. The relations L and R are
downwards closed in their last argument because of the rule comp. They
are upwards closed in their first two arguments due to the rules ⊗L and
⊗R, respectively. These facts ensure that ⟨Fma,⊢L, I,L,R⟩ is a ternary
frame.

– We show two cases (LSRU and LSRU) of the proof that L,R satisfy their
corresponding conditions, while other cases are similar.

(LSLU) Given any two formulae A and B, and J ∈ I with LJAB, we have
J ⊢L I, and B ⊢L J ⊗L A, then we can construct B ⊢L A as follows:

B ⊢L J ⊗L A

J ⊢L I A ⊢L A
id

J ⊗L A ⊢L I⊗L A
⊗L

B ⊢L I⊗L A
comp

I⊗L A ⊢L A
λ

B ⊢L A
comp

(LSRU) By the axiom ρ, for any formula A, we have A ⊢L A⊗L I, i.e. LAIA.

– The valuation v is downwards closed because of the rule comp. The other
conditions on connectives are satisfied by definition.

Therefore, ⟨Fma,⊢L, I,L,R, v⟩ is a SkMBiCA model.

Theorem 5.6 (Completeness). If A ⊢L B is valid in any SkMBiCA model, then
it is provable in SkMBiCA.

Proof. If A ⊢L B is valid in any SkMBiCA model, then it is valid in the canonical
model, i.e. v(A) ⊆ v(B) in the canonical model. From A ⊢L A, by definition
of v, we have A ∈ v(A), and because v(A) ⊆ v(B), we know that A ∈ v(B),
therefore A ⊢L B.

We show a correspondence between frame conditions and the validity of
structural laws in frames.

Theorem 5.7. For any ternary frame ⟨W,≤, I,L,R⟩,

LR-reverse holds ←→ γ and γ−1valid
α(R) valid ←→ LSA (RSA) holds ←→ L(R) valid
λ(R) valid ←→ LSLU (RSLU) holds ←→ j(R) valid
ρ(R) valid ←→ LSRU (RSRU) holds ←→ i(R) valid

Proof. The first case is that LR-reverse holds if and only if γ and γ−1 are valid,
i.e. v(A⊗L B) = v(B ⊗R A).
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(−→) For any x ∈ v(A ⊗L B) ⊆ W , there exists a ∈ v(A), b ∈ v(B) and Labx.
By LR-reverse, we have Rbax meaning that x ∈ v(B ⊗R A). The other
way around is similar.

(←−) Suppose that for any v,A,B, we have v(A⊗L B) = v(B ⊗R A). Consider
any a, b, x ∈ W such that Labx. We take v(A) = a↓ and v(B) = b↓
for some A,B ∈ At. By the definition of v and assumption, x belongs
to v(A ⊗L B) which is equal to v(B ⊗R A), therefore Rbax. The other
direction is similar.

λ : LSLU holds if and only if λ is valid.

(−→) This is similar to case of λ in the proof of Theorem 5.3.

(←−) Suppose that λ is valid, i.e. for any A and v, we have v(I⊗LA) ⊆ v(A).
Consider any a, b ∈W , e ∈ I such that Leab. We take v(A) = a↓ for
some A ∈ At. By Leab and the assumption, we know that b ∈ v(A),
which means that b ≤ a.

ρ : LSRU holds if and only if ρ is valid.

(−→) This is similar to case of ρ in the proof of Theorem 5.3.

(←−) Suppose ρ is valid, i.e. for any A and v, v(A) ⊆ v(A⊗L I). Consider
any a ∈W . We take v(A) = a↓ for some A ∈ At. By the assumption,
there exist a′ ∈ v(A) and e ∈ I such that La′ea. Because L is upwards
closed in its first argument, we know that Laea.

α : LSA holds if and only if α is valid.

(−→) For any s ∈ v((A ⊗L B) ⊗L C), there exists a ∈ v(A), b ∈ v(B), x ∈
v(A ⊗L B), c ∈ v(C),Labx, and Lxcs. By LSA, there exists y ∈ W
such that Lbcy and Lays, then by definition of v, y ∈ v(B⊗L C) and
s ∈ v(A⊗L (B ⊗L C)).

(←−) Suppose that α is valid, i.e. for any A,B,C, v, we have v((A⊗LB)⊗L

C) ⊆ v(A ⊗L (B ⊗L C)). Consider any a, b, x, c, d ∈ W such that
Labx and Lxcd. We take v(A) = a↓, v(B) = b↓, v(C) = c↓ for some
A,B,C ∈ At, then we know that x ∈ v(A⊗LB) and d ∈ v((A⊗LB)⊗L

C). By the assumption, d belongs to v(A⊗L (B⊗LC)) as well, which
means that there exist a′, b′, y, c′ ∈ W such that Lb′c′y and La′yd.
Because L is upwards closed in its first and second arguments, we
have Lbcy and Layd as desired.

L : LSA holds if and only if for any A,B,C and v, v(B ⊸L C) ⊆ v((A ⊸L

B) ⊸L (A ⊸L C)).

(−→) For any s ∈ v(B ⊸L C), we show s ∈ v((A ⊸L B) ⊸L (A ⊸L C)).
By definition, from assumptions x ∈ v(A ⊸L B), Lsxy, y ∈ v(A ⊸L

C), a ∈ A, c ∈W , and Lyac, we have to prove that c ∈ C. By LSA,
there exists x′ ∈ W such that Lxax′ and Lsx′c. We get x′ ∈ B due
to x ∈ v(A ⊸L B). Thus, we have c ∈ C because s ∈ v(B ⊸L C).

(←−) Suppose that for any A,B,C and v, we have v(B ⊸L C) ⊆ v((A ⊸L

B) ⊸L (A ⊸L C)). Consider a, b, x, c, d ∈ W such that Labx and
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Lxcd. Take v(A) = c↓, v(B) = {y | Lbcy}, and v(C) = {d′ | ∃y ∈
v(B),Layd′} for some A,B,C ∈ At. Given any y ∈ v(B) and any
d′ ∈ W , if Layd′, then by definition of v(C), d′ ∈ v(C), therefore
a ∈ v(B ⊸L C). By assumption, a ∈ v((A ⊸L B) ⊸L (A ⊸L C)) as
well, which means that, for any b′ ∈ v(A ⊸L B), x′ ∈ W , c′ ∈ v(A)
and d′ ∈ W , if Lab′x′, then x′ ∈ v(A ⊸L C), and if Lx′c′d′, then
d′ ∈ C. By the definition of v(B) and assumptions Labx and Lxcd,
we have b ∈ v(A ⊸L B), x ∈ v(A ⊸L C), therefore d ∈ v(C), which
means that there exists y ∈W such that Lbcy and Layd.

jR : RSLU holds if and only if for any A,B and v, if I ⊆ v(A ⊸R B), then
v(A) ⊆ v(B).

(−→) By RSLU, for all a ∈ v(A), there exists e ∈ I such that Reaa, then
we have a ∈ v(B) because e ∈ v(A ⊸R B).

(←−) Suppose that for any A,B and v, if I ⊆ v(A ⊸R B), then v(A) ⊆
v(B). Consider any a ∈W . We take v(A) = a↓ and v(B) = {b | ∃e ∈
I,Reab} for some A,B ∈ At. For any e′ ∈ I, a′ ∈ v(A), and b′ ∈ W ,
if Re′a′b′, then because R is upwards closed in its second argument,
we have b′ ∈ v(B), which means e′ ∈ v(A ⊸R B). Therefore I ⊆
v(A ⊸R B). From the assumption, we can now conclude that v(A) ⊆
v(B). In particular, a ∈ v(B), which means that there exists e ∈ I
such that Reaa.

LR : RSA holds if and only if for any A,B,C,D and v, if v(A) ⊆ v(B ⊸R

(C ⊸R D)) then there exists X such that v(A) ⊆ v(X ⊸R D) and
v(B) ⊆ v(C ⊸R X).

(−→) We expand the assumption.
For any A,B,C,D, a ∈ v(A), and b, z ∈ W , if b ∈ v(B) and Rabz
then z ∈ v(C ⊸R D) and for all z ∈ v(C ⊸R D), for all c, d ∈ W if
c ∈ v(C) and Rzcd, then d ∈ v(D). In other words, for any z, d ∈W ,
if there are a ∈ v(A), b ∈ v(B), c ∈ v(C), Rabz, and Rzcd, then
d ∈ v(D).
We take X = B ⊗R C and show it satisfies the two following state-
ments:

– For any a ∈ v(A), we show that a ∈ v((B⊗RC) ⊸R D). For any
x ∈ v(B⊗RC) and d ∈W , if Raxd, then by definition of ⊗R, we
have Rbcx, where b ∈ v(B) and c ∈ v(C). By RSA, there exists
z ∈W such that Rabz, and Rzcd. By the expanded assumption,
d ∈ v(D). Therefore a ∈ v((B ⊗R C) ⊸R D).

– For any b ∈ v(B), c ∈ v(C), and x ∈W , suppose Rbcx, then x ∈
v(B⊗RC) by definition of ⊗R. Therefore b ∈ v(C ⊸R (B⊗RC)).

(←−) Assume that for any A,B,C,D and v, if v(A) ⊆ v(B ⊸R (C ⊸R

D)), then there exists X such that v(A) ⊆ v(X ⊸R D) and v(B) ⊆
v(C ⊸R X). Suppose that we have a, b, c, d, x ∈ W such that Raxd
and Rbcx, then we take v(A) = a↓, v(B) = b↓, v(C) = c↓, and
v(D) = {d′ | ∃y,Raby&Rycd′} for some A,B,C,D ∈ At. For any
a′ ∈ v(A), given any b′ ∈ v(B), x′ ∈ W , c′ ∈ v(C), d′ ∈ W such
that Ra′b′x′ and Rx′c′d′. Because R is upwards closed in its first
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and second arguments, by the definition of v(D), we have d′ ∈ v(D),
which means v(A) ⊆ v(B ⊸R (C ⊸R D)). By the assumption, there
exists X such that

1. v(A) ⊆ v(X ⊸R D), which means that for any a′ ∈ v(A), given
any x′ ∈ X, d′ ∈W , if Ra′x′d′, then d′ ∈ v(D), and

2. v(B) ⊆ v(C ⊸R X), which means that for any b′ ∈ v(B), given
any c′ ∈ v(C) and x′ ∈W , if Rb′c′x′, then x′ ∈ v(X).

By Rbcx, and (2), we know that x ∈ v(X). By Raxd, and (1), we
know that d ∈ v(D), which means that there exists y ∈W such that
Raby and Rycd.

The other cases are similar to the arguments above.

A frame ⟨W,≤, I,L⟩ is left (right) skew associative if L satisfies LSA (RSA).
For other conditions, the naming is similar. If ⟨W,≤, I,L⟩ satisfies LSA, LSLU,
and LSRU (respectively RSA, RSLU, RSRU), then it is a left (respectively right)
skew frame.

We can think of a SkMBiCA frame ⟨W,≤, I,L,R⟩ as a combination of two
ternary frames ⟨W,≤, I,L⟩ (left skew frame) and ⟨W,≤, I,R⟩ (right skew frame)
sharing the same set of possible worlds, where the ternary relations are inter-
definable by LR-reverse. Whenever LR-reverse holds, then ⟨W,≤, I,L⟩ is left
skew if and only if ⟨W,≤, I,R⟩ is right skew. In fact, we have:

⟨W,≤, I,L⟩ left skew associative ←→ ⟨W,≤, I,R⟩ right skew associative
⟨W,≤, I,L⟩ left skew left unital ←→ ⟨W,≤, I,R⟩ right skew right unital
⟨W,≤, I,L⟩ left skew right unital ←→ ⟨W,≤, I,R⟩ right skew left unital

If we state the structural laws semantically rather than syntactically, as in
the sequent calculus SkMBiCA, we can reformulate Theorem 5.7 without referring
to sequents and valuations. For example, we can define ⊗L on downwards closed
sets of worlds as A ⊗L B = {c : ∃a ∈ A & b ∈ B & Labc} and express α as
(A ⊗L B) ⊗L C ⊆ A ⊗L (B ⊗L C). It is the case that α holds in a frame if and
only if it satisfies LSA.

We construct a thin SkMBiC from the frame ⟨W,≤, I,L,R⟩ and provide al-
gebraic proofs for the main theorems in [27]. The objects in the category are
downwards closed subsets of W and for A,B, we have a map A→ B if and only
if A ⊆ B.

Corollary 5.8. The category (P↓(W ),⊆) generated from any SkMBiCA frame
is a thin SkMBiC.

A frame ⟨W,≤, I,L⟩ is associative normal if it satisfies LSA and RSA simul-
taneously, and left (right) unital normal if LSLU and RSLU (LSRU and RSRU)
are satisfied. Therefore, by Theorem 5.7, we have a thin version of the main
results in [27].

Corollary 5.9. Given any frame, for the category (P↓(W ),⊆) generated from
the frame we have:

(I,⊗L) left skew monoidal ←→ (I,⊸L) left skew closed
(I,⊗R) right skew monoidal ←→ (I,⊸R) right skew closed
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Moreover, if the frame satisfies LR-reverse then:

(I,⊗L) left skew monoidal ←→ (I,⊗R) right skew monoidal
(I,⊸L) left skew closed ←→ (I,⊸R) right skew closed
(I,⊗L) associative normal ←→ (I,⊗R) associative normal
(I,⊗L) left unital normal ←→ (I,⊗R) right unital normal
(I,⊗L) right unital normal ←→ (I,⊗R) left unital normal
(I,⊸L) associative normal ←→ (I,⊸R) associative normal
(I,⊸L) left unital normal ←→ (I,⊸R) right unital normal
(I,⊸L) right unital normal ←→ (I,⊸R) left unital normal

6 SkMBiCA with Symmetry
An exchange rule can be added to both associative and non-associative Lambek
calculus to allow permutation of formulae in context [22]. It is well-known that
two implications ⧹ and ⧸ collapse into one in commutative Lambek calculus, i.e.
for any formulae A and B, A⧹B is logically equivalent to B⧸A. In particular,
consider an axiomatic presentation of non-associative Lambek calculus with
exchange ex : A⊗B ⊢L B ⊗A, both A⧹B ⊢L B⧸A and B⧸A ⊢L A⧹B are
provable. We adapt the notations in [22, Section 4] to fit in our discussion.

(A⧹B)⊗A ⊢L A⊗ (A⧹B)
ex

A⧹B ⊢L A⧹B
id

A⊗ (A⧹B) ⊢L B
π−1⧹

(A⧹B)⊗A ⊢L B
comp

A⧹B ⊢L B ⧸A
π⧸

A⊗ (B ⧸A) ⊢L (B ⧸A)⊗A
ex

(B ⧸A) ⊢L B ⧸A
id

(B ⧸A)⊗A ⊢L B
π−1⧸

A⊗ (B ⧸A) ⊢L B
comp

B ⧸A ⊢L A⧹B
π⧹

It leads to a natural question to consider semi-substructural logics with permu-
tation. An immediate idea is to add the the following axiom to LSkA:

A⊗B ⊢L B ⊗A
ex

Following this axiom, we can define a derivable rule ex′ that swaps any two
adjacent formulae in the antecedent. This rule is defined through combinations
of the axioms ex and id and the rules comp and ⊗. For example, given a
derivation f : (A ⊗ B) ⊗ C ⊢L D and the goal sequent (B ⊗ A) ⊗ C ⊢L D, we
can use the derivable rule:

f
(A⊗B)⊗ C ⊢L D

(B ⊗A)⊗ C ⊢L D
ex′

=
B ⊗A ⊢L A⊗B

ex
C ⊢L C

id

(B ⊗A)⊗ C ⊢L (A⊗B)⊗ C
⊗ f

(A⊗B)⊗ C ⊢L D

(B ⊗A)⊗ C ⊢L D
comp
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However, as observed by Bourke and Lack [7], the axiom ex makes the cal-
culus fully normal, i.e. λ−1, ρ−1, and α−1 are provable.

λ−1 =

A⊗ I ⊢L I⊗A
ex

I⊗A ⊢L A
λ

A⊗ I ⊢L A
comp

ρ−1 =

A ⊢L A⊗ I
ρ

A⊗ I ⊢L I⊗A
ex

A ⊢L I⊗A
comp

α−1 = (C ⊗B)⊗A ⊢L C ⊗ (B ⊗A)
α

(A⊗B)⊗ C ⊢L (A⊗B)⊗ C
id

(B ⊗A)⊗ C ⊢L (A⊗B)⊗ C
ex′

C ⊗ (B ⊗A) ⊢L (A⊗B)⊗ C
ex′

(C ⊗B)⊗A ⊢L (A⊗B)⊗ C
comp

(B ⊗ C)⊗A ⊢L (A⊗B)⊗ C
ex′

A⊗ (B ⊗ C) ⊢L (A⊗B)⊗ C
ex′

Therefore semi-substructural logics need a different treatment of commutativity.
Veltri has recently investigated the proof theory of symmetric left skew

monoidal categories and symmetric left skew closed categories [31, 34]. These
are variants of Mac Lane’s symmetric monoidal categories and de Shippers’
symmetric closed categories [11] which are originally introduced by Bourke and
Lack [7] where the natural isomorphism representing symmetry involves three
objects rather than two. Following the design of axiomatic calculus (called
Hilbert-style calculus in the original papers) in Veltri’s studies, where symme-
try is represented by the following axioms (notations are modified to fit our
discussion):

(A⊗B)⊗ C ⊢L (A⊗ C)⊗B
s

B ⊸ (A ⊸ C) ⊢L A ⊸ (B ⊸ C)
s′

The axiom s is introduced for the axiomatic calculus of symmetric left skew
monoidal categories where ⊸ is not present, while s′ is the dual case for sym-
metric left skew closed categories.

These axioms only take care of symmetric left skew categories. In the remain-
der of the section, we first extend the proof-theoretical analysis to symmetric
right skew and symmetric skew monidal bi-closed categories. We will first in-
troduce the definition of symmetric left (and righta) skew monoidal closed cate-
gories then prove the equivalence of the axioms of symmetry proof-theoretically.
After that we introduce the commutative extension of SkMBiCA (SkMBiCT), called
SkMBiCAe (SkMBiCTe) and prove the equivalence of the axiomatic and tree cal-
culi. Finally, we prove that SkMBiCAe is sound and complete with respect to the
preordered ternary relation model and extend the correspondence theorem 5.7
with axioms of symmetry.

Definition 6.1. A symmetric left skew monoidal closed category C is a left
skew monoidal closed category equipped with a natural isomorphism sA,B,C :
(A⊗B)⊗ C → (A⊗ C)⊗B satisfying the equations in Figure 2.

Similar to left skew monoidal closed categories, left skew symmetric monoidal
closed categories admit an equivalent characterization, i.e. the natural isomor-
phism s is bijective with the natural isomorphism s′ : B ⊸ (A ⊸ C) → A ⊸
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((A⊗B)⊗ C)⊗D ((A⊗B)⊗D)⊗ C ((A⊗D)⊗B)⊗ C

((A⊗ C)⊗B)⊗D ((A⊗ C)⊗D)⊗B ((A⊗D)⊗ C)⊗B

sA⊗B,C,D sA,B,D⊗C

sA,B,C⊗D

sA⊗C,B,D sA,C,D⊗B

sA⊗D,B,C

((A⊗B)⊗ C)⊗D ((A⊗ C)⊗B)⊗D ((A⊗ C)⊗D)⊗B

(A⊗B)⊗ (C ⊗D) (A⊗ (C ⊗D))⊗B

sA,B,C⊗D sA⊗C,B,D

αA⊗B,C,D αA,C,D⊗B

sA,B,C⊗D

((A⊗B)⊗ C)⊗D ((A⊗B)⊗D)⊗ C ((A⊗D)⊗B)⊗ C

(A⊗ (B ⊗ C))⊗D (A⊗D)⊗ (B ⊗ C)

sA⊗B,C,D sA,B,D⊗C

αA,B,C⊗D αA⊗D,B,C

sA,B⊗C,D

((A⊗B)⊗ C)⊗D (A⊗ (B ⊗ C))⊗D A⊗ ((B ⊗ C)⊗D)

((A⊗B)⊗D)⊗ C (A⊗ (B ⊗D))⊗ C A⊗ ((B ⊗D)⊗ C)

αA,B,C⊗D αA,B⊗C,D

sA⊗B,C,D A⊗sB,C,D

αA,B,D⊗C αA,B⊗D,C

(A⊗ C)⊗B

(A⊗B)⊗ C (A⊗B)⊗ C

sA,B,C sA,C,B

Figure 2: Equations of morphisms in symmetric left skew monoidal closed cat-
egory.
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A⊗ (B ⊗ (C ⊗D)) B ⊗ (A⊗ (C ⊗D)) B ⊗ (C ⊗ (A⊗D))

A⊗ (C ⊗ (B ⊗D)) C ⊗ (A⊗ (B ⊗D)) C ⊗ (B ⊗ (A⊗D))

sRA,B,C⊗D

A⊗sRB,C,D

B⊗sRA,C,D

sRB,C,A⊗D

sRA,C,B⊗D C⊗sRA,B,D

A⊗ (B ⊗ (C ⊗D)) A⊗ (C ⊗ (B ⊗D)) C ⊗ (A⊗ (B ⊗D))

(A⊗B)⊗ (C ⊗D) C ⊗ ((A⊗B)⊗D)

A⊗sRA,C,B⊗D

αR
A,B,C⊗D

sRA,C,B⊗D

C⊗αR
A,B,D

sRA⊗B,C,D

A⊗ (B ⊗ (C ⊗D)) B ⊗ (A⊗ (C ⊗D)) B ⊗ (C ⊗ (A⊗D))

A⊗ ((B ⊗ C)⊗D) (B ⊗ C)⊗ (A⊗D)

sRA,B,C⊗D

A⊗αR
B,C,D

B⊗sRA,C,D

αR
B,C,A⊗D

sRA,B⊗C,D

A⊗ (B ⊗ (C ⊗D)) A⊗ ((B ⊗ C)⊗D) (A⊗ (B ⊗ C))⊗D

B ⊗ (A⊗ (C ⊗D)) B ⊗ ((A⊗ C)⊗D) (B ⊗ (A⊗ C))⊗D

A⊗αR
B,C,D

sA⊗B,C,D

αR
A,B⊗C,D

sRA,B,C⊗D

B⊗αR
A,C,D αR

B,A⊗C,D

B ⊗ (A⊗ C)

A⊗ (B ⊗ C) A⊗ (B ⊗ C)

sRB,A,CsRA,B,C

Figure 3: Equations of morphisms in symmetric right skew monoidal closed
category.

(B ⊸ C) [7]. In other words, s′ correctly characterizes symmetry in a symmetric
left skew non-monoidal closed category.

Definition 6.2. A symmetric right skew monoidal closed category C is a right
skew monoidal closed category equipped with a natural isomorphism sRA,B,C :
A ⊗ (B ⊗ C) → B ⊗ (A ⊗ C) satisfying the equations in Figure 3, which are
similar to the ones in Figure 2 with modified bracketing.

There exists a bijective correspondence with natural isomorphisms s′R :∫ Y
Y.C(B, Y ⊸ D)×C(A,C ⊸ Y )→

∫X
X.C(A,X ⊸ D)×C(B,C ⊸ X) in

a symmetric right skew non-monoidal closed category. We prove the bijective
correspondence between s and sR and s′ and s′R proof-theoretically.

Theorem 6.3. In an axiomatic calculus of a semi-substructural logic where the
adjunction of ⊗ and ⊸ are defined in the manner of Definition 2.3, if

(A⊗B)⊗ C ⊢L (A⊗ C)⊗B
s

is an axiom in the calculus, then s′ is derivable and vice versa.
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Proof. From s to s′.

((B ⊸ (A ⊸ C))⊗A)⊗B ⊢L ((B ⊸ (A ⊸ C))⊗B)⊗A
s

B ⊸ (A ⊸ C) ⊢L B ⊸ (A ⊸ C)
ax

B ⊸ (A ⊸ C)⊗B ⊢L A ⊸ C
π−1

((B ⊸ (A ⊸ C))⊗B)⊗A ⊢L C
π−1

((B ⊸ (A ⊸ C))⊗A)⊗B ⊢L C
comp

(B ⊸ (A ⊸ C))⊗A ⊢L B ⊸ C
π

B ⊸ (A ⊸ C) ⊢L A ⊸ (B ⊸ C)
π

From s′ to s.

(A⊗ C)⊗B ⊢L (A⊗ C)⊗B
ax

A⊗ C ⊢L B ⊸ ((A⊗ C)⊗B)
π

A ⊢L C ⊸ (B ⊸ ((A⊗ C)⊗B))
π

C ⊸ (B ⊸ ((A⊗ C)⊗B)) ⊢L B ⊸ (C ⊸ ((A⊗ C)⊗B))
s′

A ⊢L B ⊸ (C ⊸ ((A⊗ C)⊗B))
comp

A⊗B ⊢L C ⊸ ((A⊗ C)⊗B)
π−1

(A⊗B)⊗ C ⊢L (A⊗ C)⊗B
π−1

Theorem 6.4. In an axiomatic calculus of a semi-substructural logic where the
adjunction of ⊗ and ⊸ are defined in the manner of Definition 2.3, if

A⊗ (B ⊗ C) ⊢L B ⊗ (A⊗ C)
sR

is an axiom then the statement

s′R : If there exists a formula Y such that two sequents B ⊢L Y ⊸ D and
A ⊢L C ⊸ Y hold, then there exists a formula X such that two sequents
A ⊢L X ⊸ D and B ⊢L C ⊸ X hold.

is true.
Conversely, if s′R is true in the calculus, then sR is derivable.
In this context, we overload the notations X and Y to represent unknown for-
mulae rather than atomic ones.

Proof. From sR to s′R. Suppose that there exists a formula Y such that two
sequents B ⊢L Y ⊸ D and A ⊢L C ⊸ Y hold, then we take X = B ⊗ C and
construct the desired sequents A ⊢L (B ⊗ C) ⊸ D and B ⊢L C ⊸ (B ⊗ C) as
follows:

A⊗ (B ⊗ C) ⊢L B ⊗ (A⊗ C)
sR

B ⊢L B
id

Assumption
A ⊢L C ⊸ Y

A⊗ C ⊢L Y π−1

B ⊗ (A⊗ C) ⊢L B ⊗ Y
⊗

Assumption
B ⊢L Y ⊸ D

B ⊗ Y ⊢L D π−1

B ⊗ (A⊗ C) ⊢L D
comp

A⊗ (B ⊗ C) ⊢L D
comp

A ⊢L (B ⊗ C) ⊸ D
π

B ⊗ C ⊢L B ⊗ C
id

B ⊢L C ⊸ (B ⊗ C)
π

Then the formula X is B ⊗ C, where B ⊢L C ⊸ (B ⊗ C) is derivable.
From s′R to s′R. To prove the sequent A ⊗ (B ⊗ C) ⊢L B ⊗ (A ⊗ C), we start
from the following two axiom sequents id : B ⊗ (A ⊗ C) ⊢L B ⊗ (A ⊗ C) and
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id : A ⊗ C ⊢L A ⊗ C. By applying π on both sequents, we obtain π id :
B ⊢L (A ⊗ C) ⊸ (B ⊗ (A ⊗ C)) and π id : A ⊢L C ⊸ (A ⊗ C). We take
A⊗ C = Y to apply s′R, then there exists a formula X such that two sequents
A ⊢L X ⊸ (B ⊗ (A ⊗ C)) and B ⊢L C ⊸ X hold. The desired derivation is
constructed as follows:

A ⊢L A
id

By s′R

B ⊢L C ⊸ X

B ⊗ C ⊢L X π−1

A⊗ (B ⊗ C) ⊢L A⊗X
⊗

By s′R

A ⊢L X ⊸ (B ⊗ (A⊗ C))

A⊗X ⊢L B ⊗ (A⊗ C)
π−1

A⊗ (B ⊗ C) ⊢L B ⊗ (A⊗ C)
comp

Definition 6.5. A symmetric skew monoidal bi-closed category SymSkMBiC is
a skew monoidal bi-closed category with the left skew symmetry s. sR is defined
as B ⊗L γ ◦ γ ◦ s ◦ γ−1 ◦A⊗R γ−1, diagrammatically:

A⊗R (B ⊗R C) A⊗R (C ⊗L B) (C ⊗L B)⊗L A

B ⊗R (A⊗R C) B ⊗R (C ⊗L A) (C ⊗L A)⊗L B

A⊗Rγ−1

sR

γ−1

s

B⊗Rγ γ

The axiomatic calculus that is sound and complete with respect to SymSkMBiC is
SkMBiCAe which is extended from SkMBiCA by adding the axiom:

(A⊗L B)⊗L C ⊢L (A⊗L C)⊗L B
s

The axiom sR is defined by transforming the diagram in Definition 6.5 into a
proof in SkMBiCAe, and then by Theorems 6.3 and 6.4, s′ and s′R are derivable
in SkMBiCAe.

Moreover, we can construct the free SymSkMBiC (FSymSkMBiC(At)) over a
set At by a similar construction of FSkMBiC(At) in Section 4:

– Objects of FSymSkMBiC(At) are formulae (Fma).

– Morphisms between A and B are derivations of sequents A ⊢L B and iden-
tified up to the congruence relation .

= defined in Figure 1 with following
additional equations:

s⊗L id ◦ s ◦ s⊗L id
.
= s ◦ s⊗L id ◦ s

(sym. axioms) s ◦ α .
= α⊗L id ◦ s ◦ s⊗L id s ◦ α⊗L id

.
= α ◦ s⊗L id ◦ s

α ◦ α⊗L id ◦ s .
= id⊗L s ◦ α ◦ α⊗L id

(s symmetry) s ◦ s .
= id

On the other hand, the commutative extension of SkMBiCT (SkMBiCTe) is
defined by adding the following two rules:

T [(U0, U1), U2] ⊢T C

T [(U0, U2), U1] ⊢T C
exL

T [U0; (U1;U2)] ⊢T C

T [U1; (U0;U2)] ⊢T C
exR
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A result similar to Theorems 6.3 and 6.4 can also be proved in SkMBiCTe. We
adopt a symmetric presentation to emphasize that SkMBiCTe should be viewed
as a combination of two distinct calculi, connected through the rule ⊗comm.

Moreover, SkMBiCAe and SkMBiCTe are equivalent.

Theorem 6.6. SkMBiCAe is equivalent to SkMBiCTe, meaning that the following
two statements are true:

• For any derivation f : A ⊢L C, there exists a derivation A2Tf : A ⊢T C.

• For any derivation f : T ⊢T C, there exists a derivation T2Af : T# ⊢L C,
where T# transforms a tree into a formula by replacing commas with ⊗L

and semicolons with ⊗R, and − with I, respectively.

Proof. We extend the proof of Theorem 4.5 by examining the additional cases
of s (for A2T) and exL and exR (for T2A).
Case f = s

(A⊗L B)⊗L C ⊢L (A⊗L C)⊗L B
s

7→

A ⊢T A
ax

C ⊢T C
ax

A,C ⊢T A⊗L C
⊗LR

B ⊢T B
ax

(A,C), B ⊢T (A⊗L C)⊗L B
⊗LR

(A,B), C ⊢T (A⊗L C)⊗L B
exL

(A⊗L B), C ⊢T (A⊗L C)⊗L B
⊗LL

(A⊗L B)⊗L C ⊢T (A⊗L C)⊗L B
⊗LL

Case f = exL f ′

f ′

T [(U0, U1), U2] ⊢T C

T [(U0, U2), U1] ⊢T C
exL

7→
(U#

0 ⊗L U#
2 )⊗L U#

1 ⊢T (U#
0 ⊗L U#

1 )⊗L U#
2

s

T [(U#
0 ⊗L U#

2 )⊗L U#
1 ]# ⊢T T [(U#

0 ⊗L U#
1 )⊗L U#

2 ]#
Lemma 4.4

T [(U0, U2), U1]
# ⊢L T [(U0, U1), U2]

# Lemma 4.3
T2Af ′

T [(U0, U1), U2]
# ⊢T C

T [(U0, U2), U1]
# ⊢T C

comp

Case f = exR f ′

f ′

T [U0; (U1;U2)] ⊢T C

T [U1; (U0;U2)] ⊢T C
exR

7→
U#
1 (⊗RU#

0 ⊗R U#
2 ) ⊢T U#

0 ⊗R (U#
1 ⊗R U#

2 )
sR

T [U#
1 ⊗R (U#

0 ⊗R U#
2 )]# ⊢T T [U#

0 ⊗R (U#
1 ⊗R U#

2 )]#
Lemma 4.4

T [U1; (U0;U2)]
# ⊢L T [U0; (U1;U2)]

# Lemma 4.3
T2Af ′

T [U0; (U1;U2)]
# ⊢T C

T [U1; (U0;U2)]
# ⊢T C

comp
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Recall that in commutative Lambek calculus (both associative and non-
associative), the two implications collapse into one. However, this is not the
case in either SkMBiCAe or SkMBiCTe. Specifically, for any formulae A and B,
neither of the sequents A ⊸L B ⊢i A ⊸R B nor A ⊸R B ⊢i A ⊸L B
(i ∈ {L,T}) is provable. We demonstrate this non-provability by taking A and
B as atomic formulae.

??
(X ⊸L Y )⊗R X ⊢L Y

X ⊸L Y ⊢L X ⊸R Y
πR

??
(X ⊸R Y )⊗L X ⊢L Y

X ⊸R Y ⊢L X ⊸L Y
π

??
(X ⊸L Y );X ⊢T Y

(X ⊸L Y )⊗R X ⊢T Y
⊗RL

X ⊸L Y ⊢T X ⊸R Y
⊸RR

??
(X ⊸R Y ), X ⊢T Y

(X ⊸R Y )⊗L X ⊢T Y
⊗LL

X ⊸R Y ⊢T X ⊸L Y
⊸RR

Lastly, we can analyze skew symmetry through the lens of ternary relational
semantics and obtain a sound and complete model of SkMBiCAe. Furthermore,
we obtain the correspondence theorem of ternary frame conditions and validity
of structural laws.

Definition 6.7. We list the frame conditions properties of skew commutativity:

Left Skew Commutativity (LSC) ∀a, b, c, d, x ∈ W,Labx & Lxcd
−→ ∃y ∈ W s.t. Lacy & Lybd.

Right Skew Commutativity (RSC) ∀a, b, c, d, x ∈ W,Lbcx & Laxd
−→ ∃y ∈ W s.t. Lacy & Lbyd.

A SkMBiCAe frame is a SkMBiCA frame where L and R additionally satisfy
LSC and RSC, respectively. A SkMBiCAe model is a SkMBiCAe frame with a
valuation function.

Theorem 6.8 (Soundness). If a sequent A ⊢L B is provable in SkMBiCAe then
it is valid in any SkMBiCAe model.

Proof. The proof is extended from the proof of Theorem 5.3 by examining one
additional case, f = s : (A⊗LB)⊗LC ⊢L (A⊗LC)⊗LB. For any SkMBiCAe model
⟨W, I,L,R, v⟩ and any d ∈ v((A ⊗L B) ⊗L C), there exist x ∈ v(A ⊗L B) and
c ∈ v(C) such that Lxcd. Moreover, there exist a ∈ v(A) and b ∈ v(B) such
that Labx. By LSC, we know that there exist y ∈W such that Lacy and Lybd,
which means that d ∈ v((A⊗L C)⊗L B).

Definition 6.9. The canonical model of SkMBiCA is ⟨W,≤, I,L,R, v⟩ where

– W = Fma and A ≤ B if and only if A ⊢L B,

– I = v(I),

– LABC if and only if C ⊢L A⊗L B,

– RABC if and only if C ⊢L A⊗R B, and

– v(A) = {B | B ⊢L A is provable in SkMBiCAe}.

Lemma 6.10. The canonical model is a SkMBiCAe model.
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Proof. The proof proceeds similarly to the proof of Lemma 5.5 but with one
additional case showing that LSC is satisfied.
Given five formulae A,B,C,C ′, D and two derivations f : C ′ ⊢L A ⊗L B and
g : D ⊢L C ′ ⊗L C, then we take A ⊗L C as the desired formula. The first
desired sequent A ⊗L C ⊢L A ⊗L C is derivable and the other desired sequent
D ⊢L (A⊗L C)⊗L B is constructed as follows:

g
D ⊢L C ′ ⊗L C

f
C ′ ⊢L A⊗L B C ⊢L C

ax

C ′ ⊗L C ⊢L (A⊗L B)⊗L C
⊗L

(A⊗L C)⊗L B ⊢L (A⊗L B)⊗L C
s

C ′ ⊗L C ⊢L (A⊗L C)⊗L B
comp

D ⊢L (A⊗L C)⊗L B
comp

Following the same argument in the proof of Theorem 5.6, we have:

Theorem 6.11 (Completeness). If A ⊢L B is valid in any SkMBiCAe model,
then it is provable in SkMBiCAe.

Finally, we extend the correspondence between frame conditions and validity
of structural laws to the symmetric case.

Theorem 6.12. For any ternary frame ⟨W,≤, I,L⟩,

s valid ←→ LSC holds ←→ s′ valid

sR valid ←→ RSC holds ←→ s′R valid

Proof. s : LSC holds if and only if s is valid.

(−→) This is similar to the case of s in the proof of Theorem 6.8.

(←−) Suppose that s is valid, i.e. for any A,B,C, v((A ⊗L B) ⊗L C) ⊆
v((A⊗L C)⊗L B). Consider any a, b, c, d, x ∈W such that Labx and
Lxcd. We take v(A) = a↓, v(B) = b↓, v(C) = c↓ for some A,B,C ∈
At, then we know that x ∈ v(A ⊗L B) and d ∈ v((A ⊗L B) ⊗L C).
By the assumption, d ∈ v((A⊗L C)⊗L B) as well, which means that
there exist a′, b′, y, c′ ∈ W such that La′c′y and Lyb′d. Because L is
upward closed in its first and second argument, we have Lacy and
Lybd as desired.

s′ : LSC holds if and only if s′ is valid.

(−→) Suppose that LSC holds, we show that for any A,B,C, v(B ⊸L

(A ⊸L C)) ⊆ v(A ⊸L (B ⊸L C)). Consider any d ∈ v(B ⊸L

(A ⊸L C)). Assume that there exists a ∈ v(A), b ∈ v(B), and x, c ∈
W such that Ldax and Lxbc. Our goal is to prove that c ∈ v(C).
By LSC, there exists y ∈ W such that Ldby and Lyac, then by the
assumption d ∈ v(B ⊸L (A ⊸L C)), we know that c ∈ v(C).

(←−) Suppose that s′ is valid, i.e. for any A,B,C, v(B ⊸L (A ⊸L

C)) ⊆ v(A ⊸L (B ⊸L C)). Consider any a, b, c, d, x ∈ W such
that Labx and Lxcd. Take v(A) = b↓, v(B) = c↓, and v(C) =
{d′ | ∃y.Lacy&Lybd} for some A,B,C ∈ At. Consider any c′ ∈ v(B),
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b′ ∈ v(A), y′, d′ ∈W , Lac′y′ and Ly′b′d′. Because L is upwards closed
in its second argument, we have Lacy′ and Ly′bd′, which means that
y′ ∈ v(A ⊸L C) and d′ ∈ v(C), therefore a ∈ v(B ⊸L (A ⊸L C)).
By validity of s′, Labx, and Lxcd, we know that d ∈ v(C), i.e. there
exists y ∈W such that Lacy and Lybd.

sR : RSC holds if and only if sR is valid.

(−→) Suppose that RSC holds, we show that for any A,B,C, v(A⊗R (B⊗R

C)) ⊆ v(B ⊗R (A ⊗R C)). Consider any d ∈ v(A ⊗R (B ⊗R C)). By
definition, there exists a ∈ v(A), b ∈ v(B), c ∈ v(C), x ∈ v(B ⊗R C)
such that Lbcx and Laxd. By RSC, there exists y ∈ W such that
Lacy and Lbyd, then by definition, we know that y ∈ v(A⊗R C) and
therefore d ∈ v(B ⊗R (A⊗R C)).

(←−) Suppose that sR is valid. Consider any a, b, c, d, x ∈ W such that
Lbcx and Laxd. We take v(A) = a↓, v(B) = b↓, v(C) = c↓ for
some A,B,C ∈ At, then we know that x ∈ v(B ⊗R C) and d ∈
v(A ⊗R (B ⊗R C)). By the assumption, d ∈ v(B ⊗R (A ⊗R C)) as
well, which means that that there exist a′, b′, y, c′ ∈ W such that
La′c′y and Lb′yd. Because L is upwards closed in its first and second
argument, we have Lacy and Lbyd as desired.

s′R : RSC holds if and only if s′R is valid.

(−→) Suppose that RSC holds, we show that for any formulae A,B,C,
D, if there exists a formula Y such that v(B) ⊆ v(Y ⊸R D) and
v(A) ⊆ v(C ⊸R Y ) then there exists a formula X such that v(A) ⊆
v(X ⊸R D) and v(B) ⊆ v(C ⊸R X). Take X = B ⊗R C, then
clearly v(B) ⊆ v(C ⊸R (B ⊗R C)). For any a ∈ v(A), if there exist
x ∈ v(B ⊸R C) and d ∈ W such that Laxd, then by definition,
there exist b ∈ v(B) and c ∈ v(C) such that Lbcx. By RSC, there
exists y ∈W such that Lacy and Lbyd, then by v(B) ⊆ v(Y ⊸R D),
d ∈ v(D), therefore a ∈ v(X ⊸R D).

(←−) Suppose that s′R is valid. Consider any a, b, c, d, x ∈ W such that
Lbcx and Laxd. Take v(A) = a↓, v(B) = b↓, v(C) = c↓, and v(D) =
{d′ | ∃y.Lacy&Lbyd} for some A,B,C,D ∈ At. Clearly, v(A) is a
subset of v(C ⊸R (A ⊗R C)). For any b′ ∈ v(B), if there exist
y′ ∈ v(A ⊗R C) and d′ ∈ W and Lb′y′d′, then by definition, there
exist a′ ∈ v(A) and c′ ∈ v(C) such that La′c′y′. Because L is upwards
closed in its first and second argument, we have Lacy′ and Lby′d′,
which means that d′ ∈ v(D) and therefore v(B) ∈ v((A⊗RC) ⊸R D).
Take F = A ⊗R C, then by s′R, there exists a formula E such that
v(A) ⊆ v(E ⊸R D) and v(B) ⊆ v(C ⊸R E). By b ∈ v(C ⊸R E)
and Lbcx, we have x ∈ v(E). By a ∈ v(E ⊸R D) and Laxd, we have
d ∈ v(D), which means that there exists y ∈ W such that Lacy and
Lbyd, as desired.
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7 Concluding remarks
This paper discusses sequent calculi for (symmetric) left (right) skew
monoidal categories and (symmetric) skew monoidal bi-closed categories in the
style of non-associative Lambek calculus. Compared to the sequent calculi with
stoup, although the calculi à la Lambek are not immediately decidable but
are more flexible in the sense that the sequent calculi for right skew monoidal
closed categories (RSkT) and skew monoidal bi-closed categories (SkMBiCT) are
presentable. Moreover, we show that they are cut-free and equivalent to the
calculus with stoup (Theorem 2.11) and the axiomatic calculus (Theorem 4.5).

Moreover, we discuss the relational semantics of SkMBiCA (SkMBiCAe) via the
ternary frame ⟨W,≤, I,L,R⟩ where L and R are connected by LR-reverse and
therefore if L satisfies left skew structural conditions then R satisfies right skew
structural conditions automatically. By Theorem 5.7, for any SkMBiCA model,
we can construct a thin skew monoidal bi-closed category (P↓(W ),⊆) and obtain
algebraic proofs of main theorems in [27].

A deeper exploration of symmetric right skew closed categories remains as
future work, particularly in identifying appropriate coherence conditions with-
out relying on monoidal structures. This investigation builds upon the founda-
tional classification of closed categories by Day and Laplaza [10], which ranges
from symmetric monoidal closed through symmetric closed and closed, to non-
associative closed categories. Their work provided concrete examples where the
Day convolution version of structural laws fails to be bijective, but did not ad-
dress the symmetric non-associative variant. In Section 6, we established results
for the special case of posetal (thin) symmetric skew monoidal bi-closed cate-
gories, where there is at most one morphism between any pair of objects. The
natural progression is to extend these results to non-posetal categories, requir-
ing again the coherence conditions for symmetric right skew closed categories.
This extension will extend the Eilenger-Kelly theorem [13, 27] to the symmetric
skew monoidal closed categories.

Another possible future direction is to incorporate modalities (exponentials
in linear logical terminology) with semi-substructural logic as in [20] (modali-
ties) and [4] (subexponentials) with non-associative Lambek calculus and non-
commutative and non-associative linear logic.

Similar to the equational theories for SkMBiCA discussed in Section 4, we
also plan to investigate the equational theories on the derivations of LSkT and
SkMBiCT in the future as well as their commutative version.
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